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INTRODUCTION

The first form of damage in composite laminates is often matrix microcracks that are defined as
intralaminar or ply cracks across the thickness of the ply and parallel to the fibers in that ply
(see reviews in [1,2]). Tensile loading, fatigue loading, environment, and thermal cycling can all
lead to microcrack formation. Microcracks can form in any ply that has a significant
component of the applied load transverse to the fibers in that ply. Microcracks lead to
degradation in properties of the laminate including changes in effective moduli, Poisson ratios,
and thermal expansion coefficients [3]. Although these changes are sometimes small,
microcracks can nucleate other forms of damage. For examples, microcracks can lead to
delaminations, cause fiber breaks, and provide pathways for entry of corrosive liquids. An
important issue in design of composite laminates is to be able to predict the initiation and
development of microcracking damage following complex loading conditions. This chapter
describes a fracture mechanics approach to the microcracking problem.

A complicating feature of composite fracture mechanics analysis is that laminates often fail by
a series of fracture events instead of by continuous crack growth. Microcracking is a prime
example. When cross-ply laminates are loaded in tension, the microcracking process is a series
of events in which a single microcrack forms and instantaneously (on observation time scale)
propagates until it fills the entire cross-sectional area of the ply. Conventional fracture
mechanics deals with predicting the propagation of an existing crack. One could imagine
analyzing microcrack propagation within a ply by standard methods, but there is little
incentive to tackle this problem. The analysis could not be compared to experimental results
for events and the analysis of a single crack does not answer the problem of predicting the
extent or number of microcracks that form under various loading histories. Some microcracking
models have abandoned fracture mechanics and used critical stress criteria instead; these models
do not work well [4]. A better approach is to extend fracture mechanics methods to handle
fracture events. Hashin has coined the term “finite fracture mechanics” to describe prediction of
fracture events by comparing the total energy released due to a finite amount of crack area to an
event toughness [5]. A finite fracture mechanics model for matrix microcracking can correlate a



large body of experimental observations and can predict the extent of microcracking damage
under various loading conditions [1,2].

FINTE FRACTURE MECHANICS PRINCIPLES

The development of a finite amount of fracture area, DA, must conserve energy. By the first
law of thermodynamics, energy balance for an elastic material can be expressed as
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where w is external work, U is internal energy, g is surface energy, and K is kinetic energy.
Conventional fracture mechanics deals with infinitesimal static crack growth for which

† 

DA Æ da and 

† 

DK Æ 0. Crack growth occurs when energy release rate, G, is equal to the critical
energy release rate, Gc:
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Gc is used in place of 2g because experimental observations show that energy released during
crack growth is always much larger than the thermodynamic surface energy (2g). In other
words, Gc is an effective material property that accounts for crack-tip energy dissipation not
included in a linear-elastic stress analysis of crack-tip stresses. The logical extension to finite
fracture mechanics is to assume a fracture event occurs when
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Here G* is a finite energy release rate and 

† 

Gc
*  is an effective material property or event

toughness that accounts for energy dissipation and kinetic energy effects not included in static
linear-elastic analysis of work and energy before and after a fracture event. Conventional
fracture mechanics works well provided Gc is found to be independent of specimen geometry.
Similarly, finite fracture mechanics works well provided 

† 

Gc
*  is independent of specimen

geometry and current damage state and provided initiation of the event is facilitated by
conditions such as existing flaws or stress concentrations. The appearance of DK in 

† 

Gc
*  might

render some fracture events unsuitable for finite fracture mechanics. DK can be included in an
effective toughness, however, provided either it is small (

† 

DK << G*) or it is a constant that is
characteristic of a particular fracture event [6].

APPLICATION TO MICROCRACKING

To verify the use of finite-fracture mechanics for microcracking, predictions can be compared
to experiments. The procedure is to evaluate G* and then predict microcrack formation by
assuming the next crack forms when 

† 

G* = Gc
* . A unique feature of finite fracture mechanics is

that G* is different for load-control vs. displacement-control experiments [2,6]. Most static
experiments use displacement control, but fatigue or thermal cycling experiments use load
control. Both conditions must be analyzed. By using global energy methods, which include
residual stresses effects [7], G* for formation of a new microcrack in a [0n/90m]s laminate



midway between two existing microcracks separated by 

† 

2mtplyri, where tply is thickness of a

single ply, can be expressed exactly as [2]
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Here 

† 

s 90 = kms app + kthDT  is the stress transverse to the fibers in the 90˚ plies in the absence of

damage (it is linearly related to applied load, sapp, and temperature difference, DT, by laminate-
dependent mechanical and thermal stiffnesses, km and kth), B is laminate thickness, and EA(r) is
the effective axial modulus of a microcracking interval of dimensionless length r . In the
displacement-control equation, 

† 

EA ,N
*  is the axial modulus of a damaged laminate with N

microcracks. Analogous, but different, results can be derived for microcracking of surface plies
in [90m/0n]s laminates [2].

Figure 1 compares predictions to experiments for three different cross-ply laminates. All
results are fit well with 

† 

Gc
* = 230 ± 30  J/m2. The analysis for these experiments required input

of EA(r) and ri. EA(r) can be found by various stress-analysis methods [1]. The analysis for
Fig. 1 used a complementary energy solution [8]. Simpler, albeit less accurate, shear lag
methods are available [9]. The complementary energy solution loses accuracy when the ratio of
the 0˚ to 90˚ thicknesses increases [10]; for these geometries EA(r) can be found by potential
energy solutions or by numerical methods [2,10]. The term ri is the dimensionless length of the
microcracking interval where the next crack forms. This term is not the average crack spacing
because experimental observations and theory both reveal that larger crack intervals are more
likely to crack than smaller crack intervals. Unless experiments are coupled with direct
observation of each microcracking event, the recommended analysis method is to replace ri by
f<r> where f is a parameter greater than 1 and <r> is the average microcrack spacing [2,4]. In a
deterministic microcracking model where the crack always forms in the largest crack interval, f
would oscillate between 1 and 2 or average 1.5. Alternately f can be measured by monitoring
the microcracking process [11] or by adjusting it to fit experimental results [4]. Both these
approaches show f to be between 1.2 and 1.5.

The advantage of finite fracture mechanics analysis of microcracking is that a single material
property, 

† 

Gc
* , can correlate data for different layups, such as the three layups in Fig. 1. To

verify this important fracture mechanics result for more experiments, the microcrack formation
criteria can be cast in a master plot form [4] by rewriting Eqs. (4) and (5) (and analogous
expressions for laminates with surface 90˚ plies) as

† 

s red = Dred Gc
* + DT (6)

where sred and Dred are reduced stress and crack density defined by
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Here 

† 

Gunit
*  is the normalized energy release rate for unit s90. If finite fracture mechanics works

well, a plot of sred as a function of Dred should be a straight line. The slope of the line gives the
microcracking toughness and the intercept gives the thermal stress term. A sample master plot
is given in Fig. 2 [4]. The results from 14 different layups, including both central (open
symbols) and surface (filled symbols) cracked plies, all fall on the same line.

DISCUSSION

In typical microcracking experiments, microcracks form as a series of events. Experimental
results consist of recording the number of microcracks as a function of loading conditions and
specimen geometry. More detailed information could include the distribution of microcracking
spacings [11]. If microcracks form in multiple ply groups (such as cracks on each surface of
[90n/0m]s laminates), it is important to record correlations between damage states of the various
plies. For transparent composites, full microcracks can be observed. For opaque composites,
microcracks can be observed only on the edge. It is important to verify such microcracks
correspond to a complete microcrack by observing opposite edges or by using x-ray methods.
Microcracking experiments have been done by static tensile loading [1,2], mechanical fatigue
[12], thermal cycling fatigue [13], and environmental exposure [14]. Static results are best
analyzed by the methods above. Fatigue and thermocycling results can be analyzed by a
modified Paris law where the rate of increase in crack density, D, per cycle, N, is related to the
range in energy release rate, DG*, by

† 

dD
dN

= K DG*( )
m

(8)

where K and m are fatigue toughness properties.

Fig. 1. Microcrack density as a function of applied stress for three Hercules AS4/3501-6 cross-
ply laminates. The smooth lines are finites to finite fracture mechanics theory assuming Gc =
230±30 J/m2 and DT = –100˚C.



The master plot in Fig. 2 shows that finite fracture mechanics of microcracking captures all
major features of the microcracking process. There are minor details, however, and systematic
effects that require further analysis. For example, the onset and initial rise in crack density is
typically slower in experiments than as predicted by theory (see Fig. 1). This effect can be
explained by introducing statistical variations in 

† 

Gc
* . The early microcracks occur where the

toughness is low; the later cracks are controlled by geometry (i.e., they form midway between
existing microcracks). Statistical variations can be included in the analysis by using simulations
to fit experiments [2]. The results of such fits are that the mean toughness is similar to the
toughness calculated by the simpler methods. The early crack density data gives new
information about material variability. Simulations naturally account for the effect of
microcracks to occur in larger microcracking intervals and thus do not need an f  factor.
Simulations results show that f is between 1.3 and 1.5 [11].

When 

† 

Gc
*  is found by fitting to individual layups, rather than a global master plot, there is a

systematic trend towards lower toughness as the strain to initiate microcracking increases. This
trend suggests that loading is causing diffuse damage in the microcracking plies that is causing a
drop in 

† 

Gc
* . Laminates that initiate microcracks at low strain (e.g., laminates with thick 90˚

plies) have less damage and thus have a higher apparent toughness. Laminates that initiate at
higher strain show a slightly lower toughness. This effect can be analyzed by continuum
damage mechanics methods [10]. By using numerical methods and plotting G* as a function of
dimensionless crack spacing, r, it was observed that G* is a property of the ply material but
independent of the supporting plies. This observation made it possible to incorporate finite
fracture mechanics methods into continuum damage mechanics models. By coupling a diffuse
damage evolution law with microcracking toughness, a wider range of laminate structures can be
predicted with greater accuracy [10].

Fig. 2: Master plot results for 14 different layups of Hercules AS4/3501-6 laminates. The open
symbols are for [0m/90n]s laminates; the filled symbols are for [90n/0m]s laminates. The straight
line is a fit to all results; the slope and intercept give Gc = 229 J/m2 and DT = –99˚C.
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