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ABSTRACT

A new double lap-shear sample geometry suppressing the use of arms and working in
compression is introduced. This geometry is not only intended to control the thickness of the
adhesive layers and obtain sharp edges, but also to limit to a considerable extent the
occurrence of a peel stress. This test is analyzed through a modified shear-lag theory
including internal stresses resulting from the cure shrinkage of thermosetting resins and
different coefficient of thermal expansion of the adhesive and adherents. This theory is
validated using finite element analysis, and expanded to describe the case of imperfect joint
failure. Such a phenomenon is present in most adhesive joints where the strength of the
adhesive is reached before the interface fails, due to the presence of internal stresses.

INTRODUCTION

Advanced composite materials are widely used in applications such as aircraft and automotive
industry due to their high strength-to-stiffness ratio and high corrosion resistance. Their use as
structural materials often requires that the polymer based composite be attached to another
structure, by means of bolted joints, or more generally an adhesive layer, because of
unavoidable stress concentrations. Therefore, an adhesive bonded structure generally consists
of three components of different mechanical properties, namely the two adherents and the
adhesive layer. Much concern has been paid in describing the mechanical response of such
assembled system, including their behavior under bending, tension and shear. The problem of
shear failure of interfaces addresses several applications such as metal to polymer composite
bonding, metal to metal brazing or composite interlaminar failure. This problem is generally
solved by four distinct routes, namely:

 i. the shear strength criterion
 ii. the local shear strain criterion
 iii. the stress intensity factor
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 iv. or the (strain) energy release rate.
These methods all have in common that they require a determination of the stress tensor of the
system. However, because of the material non-homogeneity and the geometric complexity of
the medium, the exact analytical treatment of the related structural problem is hopelessly
complicated. The existing analytical solutions have, therefore, been carried out under certain
simplifying assumptions in formulating the problem.

The strength of an adhesive joint is not a property of the adhesive alone but is a system
property depending on adherents, the adhesive, the joint geometry, preparation and service (or
test) conditions [1]. The most widely used test methods can be classified as general lap-shear
tests. Early attempts, including those by Volkersen [2] or Goland and Reissner [3], to describe
the stress field in the simple lap-shear geometry, consisting of two plates bonded by a glue
film, have revealed the existence of a peel stress generated by flexure of the adherents due to
misalignment of the parts. Its magnitude and geometric variations between samples were
found to strongly reduce the reliability of the test results. It is indeed particularly difficult to
manufacture samples with a controlled bond thickness. Furthermore, the effects of a glue
meniscus and the initial stress state in the adhesive layer were generally ignored. Internal
stresses resulting from cure shrinkage of thermosetting polymers and different coefficients of
thermal expansion between the adhesive and the adherents during cool-down have indeed
proven to play an important role in the adhesive performance of model systems [4]. However,
in order to illustrate these effects, an alternative lap-shear test geometry, which minimizes
sample preparation difficulties and the development of complex stress states, is required.

This study introduces a new lap-shear test geometry. The proposed modified double-lap shear
specimen (MDLS) enables a tight control of the thickness of the adhesive layers with sharp
edges, and introduces the possibility to mold several samples at once. The stress state in the
MDLS, including internal stresses, is obtained from a modified shear lag-theory. It is further
compared to Finite Element Analysis (FEA) results, and shape functions are found. The
model is finally expanded to account for joint imperfections, such as microcracking, and
compared to experimental values obtained in related work.

TEST GEOMETRY

By contrast with traditional lap-shear design, the new geometry consists of the central part of
a double lap-shear specimen and the inner adherent is pushed in, therefore limiting, to a
considerable extent, the occurrence of peel stresses. Fig 1 presents the geometry for solving
for stresses in a double lap-shear specimen. The system is shown with 3 constituents: an inner
plate of thickness 2t1, with Young modulus E1 and Poisson’s ratio ν1; two adhesive layers of
thickness t2 and elastic properties E2, ν2; and two outer plates of thickness t3 and elastic
properties E3, ν3. The boundary conditions are defined by a simple compression on the inner
plate of magnitude σ0 while the two outer plates are simply supported. The origin of axis
system (x,y,z) is on the midplane of the plate midway between the top and bottom surfaces.
The problem is symmetrical about the y-axis, thus only half of the system needs to be
analyzed (which indeed shows the advantage of automatically having a zero shear stress at
x=0).
In the following, the inner plate is labelled 1, the adhesive layer 2, and the outer plate 3. The
shear-lag analysis consists in determining the three averaged axial stresses <σyy

(1)>, <σyy
(2)>

and <σyy
(3)> in the layers, and the interfacial shear stresses τ1 (layer 1/layer 2), τ2 (layer

2/layer 3).
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THEORY

A modified shear-lag theory was recently introduced by Nairn for determining stresses in
multi-layered composite structure of n orthotropic layers of thickness ti=xi-xi-1 [5]. Based on
analysis of the most common assumptions used in shear-lag models, it was proposed that an
optimal shear-lag analysis can be derived by assuming the shear stresses are product of two
function, one which depends only on x and one which depends only on y. A modified shear-
lag method was developed by introducing shape function, like in the case of the cylindrical
and platelet geometry [6]. The shape function represents assumptions about the x dependence
of the stresses; the shear-lag analysis solves for the y dependence.
Eventually a system of (n-1) equations with (n-1) unknowns τxy(xi) is obtained, which can be
solved by writing the shear stresses between consecutive layers as a vector and determining
the roots of the system matrix (i.e. Eigenvalues + Eigenvectors). The following presents the
solution to the case of n=3 layers for the double lap-shear specimen.
The problem is solved through the system of equations:
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zi being the local x coordinate, Ri and Li the right and left shape function of layer i
respectively.
For matrix A, the shape functions in the thin adhesive layer have been assumed to be linear
but, for now, the right shape function in layer 1 and the left shape function in layer 3 have be
left undetermined. The solution of Equation [1] is:

τ λ λi j j j j
j

jiC y C y p= − + −+ −
=
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2
[3]

where pji is the ith component of the eigenvector 
�

pj associated to the eigenvalue λj
2 of the

matrix M:
M A B= −1 [4]

Axial stresses in the 3 layers are obtained from stress equilibrium:
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This gives, upon integration on y:
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The integration constants of <σy
(i)> are labelled Ci and determined using the far field stress

hypothesis. If l tends towars infinite, the stresses tend to become symmetric vs. the centre of
the assembly y=0, i.e. the solution tends towards that for symmetrical loading case. One then
finds:
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It is important to notice that all the information on internal stresses is introduced via the
constants Ci.

Shape Functions
Two constants appear in matrix A (<z1R1> and <z3L3>). These two constants are the average
values of shape functions describing the x-dependence of shear stress in the inner and outer
plates respectively. Interestingly, the best fitting values were found close to:
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The shape functions chosen in the present are simple hyperbolic functions of 1/zi. In the
present work, the adhesive shape functions were simply assumed to be linear; this assumption
is reasonable because of the low adhesive film thickness. The shear-lag analysis is shown to
compare well with FEA in Fig 2. The use of shape functions increases the accuracy of the
analysis in Fig 2, and it can be seen that all energetic approaches would be very close.
Nevertheless, due to the shear-lag assumptions, the shear stress does not vanish at the end of
the joint, which involves an error when considering the maximum shear stress. However, this
error becomes small when the Young’s moduli ratio is increased.

Effects of Internal Stresses
Fig 3-4 illustrate two significant effects of internal stresses. While their influence is negligible
on the adherents, it is marked in the adhesive layer. In terms of axial stress, a tensile residual
stress builds up during cool down; its contribution to Von Mises shear stress is sufficient to
induce microcracking of the adhesive. In terms of shear, the amount of interfacial shear
generated by internal stress can be large. It is shown that, given an external load, the
interfacial shear is increased with the level of internal stresses. The solution of the problem is
easily recast as function of Ci which include the internal stresses contribution, so that it is
possible to separate the contributions of applied load and internal stresses to the true local
shear strength τ0. Eventually, with τexp the shear stress due to applied load, one obtains

τ τ χ0 ∝ +exp ∆T [11]

where χ is a positive parameter defined by elastic and geometric properties of the system.

The reader is referred to the experimental part of this work in ref. [7], in which the amount of
internal stress was changed by process tailoring without affecting the surface thermodynamics
nor the mechanical properties of the adhesive layer. It clearly evidenced that the true local
bond strength was not affected by the process, i.e. τ0 calculated within the formalism
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presented here was constant, whereas the experimental failure loads were drastically moved
towards lower values when the level of internal stresses increased.

RESULTS AND DISCUSSION

A typical force vs. displacement curve, representative of the tests achieved with constituents
of properties given by Table I, is presented in Fig 5. The temperature difference for this
epoxy was such that ∆T = -142°C, and the applied load of σ0 = 50MPa is representative of
experimental results.
A deviation from elastic linearity is observed at point A during loading of the sample before
first failure occurs (at C). The force vs. displacement curve then increases again (D to E) in a
non-linear manner before the final failure of the sample is achieved.
Internal cohesive microcracking of the epoxy adhesive was clearly observed in fracture
surfaces by means of scanning electron microscopy. The same phenomenon had already been
reported for epoxy adhesive joints in standard double-lap shear geometries [8]. These
microcracks are initiated by the high stress state induced in the adhesive layer by both axial
and shear stresses and have an orientation of ca. 45°.
Let us consider a damaged zone of length d as shown in Fig 6. As a first approximation, it is
possible to consider that the shear modulus of the adhesive, and thereby its Young modulus
too, are reduced by transverse cracking. This hypothesis is well supported by the stress-strain
curves one obtains in such a case, showing a decrease of the effective modulus of the joint.
Under this hypothesis, the stresses of the system are obtained straightforwardly by assuming
two zones with distinct mechanical properties of the adhesive, and requiring stresses to be
continuous over these two zones. The basic stresses are obtained as in the case of the
undamaged MDLS, treating the two zones separately and let stresses be continuous over
zones.
In the frame of the MDLS system used up to this point, Fig 7 shows the distribution of
stresses if the Young’s modulus is assumed to be decreased by 90% in the damaged zone.
Microcracks severely reduce the mechanical properties of the joints and, as a consequence,
the maximum shear stress concentration is following the microcracking progression, rather
than staying at the bond extremity. Microcracking progresses along the joint until the Von
Mises shear stress in the center of the adhesive is low enough. As the undamaged length of
joint is reduced, the maximum interfacial shear stress is decreased. At the maximum force, the
maximum shear stress is located near the end of the microcracking length and reaches the
interfacial shear strength of the joint. Fracture is thus initiated at this location and, from this
point onwards, propagates along the interface.
As it was outlined previously, microcracking phenomenon is strongly coupled to the internal
stress level. When the internal stress is decreased, the microcraking length is increased, since
the equivalent Von Mises shear stress will be reached for higher applied loads. To summarize,
the microcracking phenomenon allows a release of internal stresses; the length of the joint
could therefore be reduced by a length approximately equal to that of the microcracked zone
without affecting its performance.

While this case is the most commonly encountered and describes the failure of joints built
with brittle adhesives, it is worth mentioning that similar stress-strain curves are obtained
when the adhesive is allowed to plasticize. More, the local stress analysis required to describe
the partial plasticization of the adhesive is the same as that describing microcracking. It is
therefore possible to treat these two different phenomena in the same way. Additionally, by
keeping constant the rate of propagation of microcracking (plasticization) along the joint, it is
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possible to fit the stress-strain curve in Fig 5 up to point C, and further obtain the
microcracking (plasticization) length, comparing well with the experiment.

CONCLUSIONS

A new double-lap shear geometry testing was introduced, enhancing the traditional lap-shear
test resolution. Using a modified shear-lag theory, the axial and shear stresses were
determined in the adherents and adhesive, including the effects of internal stresses, using a
simple formalism. It was further shown that internal stresses contribute to a great extent to
reducing the strength of the joint and therefore must be accounted for. This analysis was
further expanded to include effects of adhesive cohesive failure (microcracking) prior to
interfacial debonding.
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Table I: Material and geometric properties of the system studied

Layer Material Ey νxy α t
(GPa) (10-5 1/K) (mm)

1 & 3 Aluminum 69 0.33 2.36 4
2 Epoxy 3.167 0.35 6.70 0.2
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Figure 1: Geometry of the modified double lap-shear specimen
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