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Abstract
A fiber’s efficiency in a short-fiber composite can be accurately solved by shear-lag methods,
which can account for fiber geometry, an imperfect interface (or interphase), and extend to low
volume fractions. Such an analysis was used to evaluate the aspect ratio requirements for single-
walled nanotubes (SWNT) in a polymeric composite and contrast it to conventional fibers. The
aspect ratio requirements are indistinguishable among all stiff fibers, except at low volume frac-
tions where stiffer fibers require higher aspect ratios. The required aspect ratio decreases signifi-
cantly at higher volume fractions. A scaling effect in the interphase term implies the interphase is
more important for nano-fibers than for larger fibers. If the interface between nano-fibers and the
matrix is not excellent, those fibers will not provide effective reinforcement. The most promising
SWNT composites should use higher volume fractions and focus on systems where the fiber can
stiffen the matrix in the interphase region.
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1. Introduction

A common model for aligned short-fiber composite modulus, E∗c , simply modifies the stan-
dard rule of mixtures [1, 2]. For nanotubes reinforcement, this model takes the form

E∗c = η f E( f )
zz φV f + EmVm (1)

where η f is a fiber efficiency factor, E( f )
zz is the nanotube wall axial modulus, Em is the matrix

modulus, and V f and Vm are the fiber and matrix volume fractions. The fiber volume fraction
is taken as inclusive of the hollow space within the nanotubes (for better comparison with solid
fiber results). The factor φ is the fraction of the nanotube occupied by wall material (i.e., the
volume fraction of nanotube walls with modulus E( f )

zz is Vw = φV f ).
The fiber efficiency factor, η f , is a short fiber’s load bearing capability relative to the analo-

gous continuous fiber. It can be calculated from a concentric cylinders model (CCM) for a fiber
of length l embedded in a matrix cylinder. The fiber has zero load on the ends while the matrix
carries the entire applied load (see Fig. 1A). The efficiency factor is then defined by

η f =
1

lσ( f ,∞)
zz

∫ l/2

−l/2

〈
σ

( f )
zz (z)

〉
dz (2)
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where
〈
σ

( f )
zz (z)

〉
is the average stress in the fibers and σ

( f ,∞)
zz is the far-field fiber stress in the

corresponding infinite concentric cylinders. The CCM problem is easily solved by shear lag
analysis to give [1, 2, 3]:

η f = 1 −
tanh βρ
βρ

(3)

where β is the dimensionless shear-lag parameter and ρ = l/d is the fiber aspect ratio (for fiber
diameter d). Since tanh x→ 1 for large x, this equation has the limiting solution:

ρ(η f ) ≈
1

β(1 − η f )
(4)

This limiting solution is accurate within 1% for η f ≥ 0.7. Thus, given any desired fiber efficiency
and shear lag parameter, the fiber aspect ratio required to achieve that efficiency can easily be
calculated. Here, 90% efficiency was arbitrarily selected as a benchmark for excellent short-fiber
composites. The aspect ratio required to achieve this efficiency, denoted as ρ90, is

ρ90 =
10
β

(5)

This same criterion was used by Hull and Clyne [1]. It would be possible to account for additional
stress transfer into the fibers ends, but for stiff fibers (relative to the matrix), the effect is always
small.

The standard approach in the composites literature [1, 2] has made aspect ratio calculations
by using the shear-lag parameter first derived by Cox [4]:

βcox = 2
√

Gm

E( f )
zz ln 1

V f

which implies ρ(cox)
90 = 5

√
2(1 + νm)

(
− ln V f

)E( f )
zz

Em
(6)

where Gm = Em/(2(1 + νm)) is the shear modulus of the matrix and νm is its Poisson’s ratio.
This approach has two serious deficiencies. First, ρ(cox)

90 is independent of scale, which is a
consequence of conventional elasticity analysis. A Cox-based analysis of nano-fiber reinforced
polymers is pointless because it would provide nothing new compared to analysis of conventional
fibers. Second, the Cox shear lag parameter can be shown by comparison to FEA calculations
to be very inaccurate [3, 5]. Aspect ratio requirements predicted by βcox are wrong by more
than an order of magnitude. Shear lag analysis of fiber/matrix stress transfer can be much more
accurate, such as the method first derived by Nayfeh [6] and later developed into modern stress-
transfer theory by McCartney [7]. This improved shear lag solves the accuracy problem, but
still has several deficiencies. First, the improved β is still scale invariant and thus provides no
information unique to nanocomposites. Second, the analysis assumes a solid fiber and thus
provides no information about hollow nanotubes. Third, the analysis breaks down at low fiber
volume fracture and thus provides no guidance for work aimed at developing high-performance,
low-fiber-volume-fraction nanocomposites.

This paper uses recent advances in fiber/matrix shear lag analysis [3, 5, 8] that extend the
Nayfeh-McCartney approach to solve its deficiencies. The new shear-lag methods extend the
analysis to handle multiple concentric cylinders and to handle a hollow core. This paper used
these extensions to look at reinforcement effects of single-wall nanotubes (SWNT) and multi-
wall nanotubes (MWNT) as compared to solid carbon fibers. More importantly, the new shear-
lag methods can model imperfect interfaces (or interphases) between the matrix and the fiber or
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between walls of a MWNT. The presence of an imperfect interphase introduces a scaling term
that makes nanocomposites much different than conventional composites, and, for the first time,
makes shear lag analysis a useful tool for modeling of nano-fiber composites. The interface
term reveals effects that may be detrimental to nano-fiber reinforced composites. In other words,
small-diameter fibers put more burden on the interface than large-diameter fibers. For effective
nano-fiber reinforcement, the interface must be excellent. Finally, the new shear lag methods
have solved the issue of low fiber volume fractions. This feature was used to evaluate the po-
tential for low V f nanocomposites with excellent properties. Such composites seem unlikely.
Nanocomposite development would benefit more by emphasis on higher V f composites.

2. Shear Lag Theory

First a remark. The fiber-efficiency-adjusted rule of mixtures in Eq. (1) is a common first step
in short-fiber composite analysis [1, 2]. When η f is found by a CCM analysis, the result is an
upper bound to E∗c . The CCM in Fig. 1A is a unit cell for a composite. When the CCM has the
same V f as the bulk composite, the full composite consists of repeating unit cells as illustrated
in Fig. 1B. But, the composite can be built from CCM unit cells in many ways. An alternative
is to imagine the CCM unit cell as having fiber volume fraction V∗f that is higher than V f in
the bulk composite. The full composite then consists of CCM unit cells interspersed with pure
matrix cells of length lm = (V∗f − V f )l/V f such that the total composite fiber volume fraction
remains V f . The extreme geometry is when the CCM is pure fiber or V∗f = 1 (see Fig. 1D). This
last example has fiber and matrix elements in series that has the Reuss lower bound or series
modulus. As V∗f decreases from 1 to V f the modulus transitions from this lower bound to the
upper bound result. All calculations in this paper used the upper bound result, i.e., used V∗f = V f .
As a consequence, the η f calculated here is the upper bound to fiber efficiency, which implies
that ρ90 is a lower bound to the required aspect ratio. The benchmark term ρ90 thus defines the
minimum fiber aspect ratio needed for a particular short fiber composite to be highly efficient.
But, since axial properties are usually well modeled by upper bound results [9], this approach
should provide a useful benchmark.

The CCM geometry for a SWNT in a matrix is shown in Fig. 1A. Here r0 and r f are the
inner and outer radii of the SWNT wall and rm is the outer radius of the matrix. The shear lag
parameter, in dimensionless form and including imperfect interface effects is [3, 8]:

β2 =
B11r2

f

A11
(7)

where

A11 =
1

2G( f )
zr

〈1 − r2
0

r2

 O f (r)
〉

+
1

2Gm

〈(
r2

m

r2 − 1
)

Im(r)
〉

+
1

r f D( f−m)
s

(8)

B11 =
2

E( f )
zz (r2

f − r2
0)

+
2

Em(r2
m − r2

f )
(9)

where G( f )
zr and Gm are the fiber axial shear modulus (fiber is assumed orthotropic) and the ma-

trix shear modulus (matrix is assumed isotropic), O f (r) and Im(r) are fiber and matrix shape
functions, and D( f−m)

s is an imperfect interface parameter for the fiber-matrix interface.
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Figure 1: A. Cylindrical coordinate system for concentric cylinders model analysis for a single-wall nanotube of radius
r f (and core radius r0) in a matrix cylinder of radius rm under total applied stress σ0, which is applied only to the matrix.
The single wall is shaded gray; the core and matrix are both white. B. A composite structure made of a repeating unit
cells of matrix and fiber. C. A composite structure made up of repeating unit cells having V∗f > V f and regions of pure
matrix such that the entire composite has fiber volume fraction V f . D. Same as C except V∗f = 1.

The imperfect interface model is based on Hashin’s approach to modeling interfaces in com-
posites [10, 11]. In brief, the modeled 2D fiber-matrix interface is allowed to have a displacement
discontinuity. In shear lag analysis the only discontinuity that applies is relative sliding between
the fiber and matrix. This axial displacement discontinuity, [w], is then assumed to be propor-
tional to the interfacial shear stress:

[w] =
τrz(r f , z)

D( f−m)
s

(10)

If D( f−m)
s → ∞, the discontinuity is zero and the interface is perfect. If D( f−m)

s → 0 the interfacial
shear stress is zero and the interface is debonded. Values between 0 and ∞ define an imperfect
interface with D( f−m)

s characterizing the interface quality. This interface modeling converts a
3D interphase zone into a 2D interface, which simplifies analysis and reduces the number of
unknown interphase properties. In other words, a model with a 2D interface having interface
property Ds gives approximate results for bulk composite response when compared to a model
with an explicit 3D interphase. It achieves bulk response results with fewer interphase properties.
If the real interphase zone has reduced stiffness (relative to fiber and matrix), the best 2D model
would require a low Ds corresponding to slippage in the 2D view. If the real interphase was
divided into pure fiber and matrix, the 2D model would be correct with Ds = ∞. It is also
conceivable that interactions between a fiber and a matrix might stiffen the interphase region.
The best approximation to a stiffened interphase zone in a model that has only a 2D interface
might need a negative Ds. It is better viewed a 1/D( f−m)

s that becomes zero for a perfect 2D
interface, but may become negative for an interphase zone that is stiffened relative to other phases

4



[12] (note that negative Ds values are energetically admissible provided they correspond to an
interphase zone with finite stiffness [12], i.e., provided 1/D( f−m)

s is greater than the result for a
rigid interphase, which is negative).

Note that the role of interfacial properties on nanocomposite properties has often been the
subject of papers on nanocomposites modeling (e.g., [13, 14]), which usually have involved
modifications of the Eshelby method for ellipsoidal inclusions [15] now with an interphase. The
approach of this paper is to modify shear lag methods and account for interface effects using a
single interfacial property, Ds. This new approach allows many shear-lag methods to be applied
to nanocomposite modeling and reduces the role of the interface to a single property. As dis-
cussed below, it might be possible to measure Ds by experiments. In contrast, some modeling
methods have been based on interfacial properties that are unknown and difficult to measure.
Furthermore, a analysis involving cylindrical fibers may be the preferred approach to modeling
fiber aspect ratio effects rather then analyses based on elliptical inclusions.

The functions O f (r) and Im(r) are shape functions for the fiber and matrix and the brackets
(< · · · >) indicate an average over the fiber or matrix cross-sectional area. Any shape functions
can be used with the only requirements being that O f (r0) = 0, O f (r f ) = Im(r f ) = 1, and Im(rm) =

0 [5]. McCartney suggested specific functions based on an assumed (and reasonable) radial
dependence for the shear stress [7]:

O f (r) =
r2 − r2

0

r2
f − r2

0

and Im(r) =
r2

m − r2

r2
m − r2

f

(11)

After averaging, the shape function terms become:〈1 − r2
0

r2

 O f (r)
〉

=
r2

0

r2
f − r2

0

 r2
0

r2
f − r2

0

ln
r2

f

r2
0

− 1 +
r2

f − r2
0

2r2
0

 (12)

=
1
2
−

(
1 − φ
φ

)2

ln (1 − φ) −
(

1 − φ
φ

)
(13)〈(

r2
m

r2 − 1
)

Im(r)
〉

=
r2

m

r2
m − r2

f

 r2
m

r2
m − r2

f

ln
r2

m

r2
f

− 1 −
r2

m − r2
f

2r2
m

 (14)

= −
1

Vm

(
Vm

2
+ 1 +

1
Vm

ln (1 − Vm + χ)
)

(15)

where φ = (r2
f − r2

0)/r2
f and Vm = (r2

m−r2
f )/r

2
m. The χ term in the ln(1−Vm +χ) term was included

to make that term stable for Vm close to 1. Finite element analysis (FEA) calculations show that
χ = 0.009 is a universal constant that works for stress transfer into both isotropic and anisotropic
fibers and for any fiber/matrix modulus ratio [5].

The full shear lag parameter becomes

β2 = 4

1−Vm
EmVm

+ 1
E( f )

zz φ

1
G( f )

zr

(
1
2 −

(
1−φ
φ

)2
ln (1 − φ) −

(
1−φ
φ

))
− 1

GmVm

(
Vm
2 + 1 + 1

Vm
ln (1 − Vm + χ)

)
+ 2

r f D( f−m)
s

(16)
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Thus, the aspect ratio to get 90% efficiency from the fibers is

ρ90 = 5

√√√√√√√ f1(φ) E( f )
zz

G( f )
zr

+ 2(1 + νm) f2(V f )
E( f )

zz
Em

+
2E( f )

zz

r f D( f−m)
s

V f

1−V f

E( f )
zz

Em
+ 1

φ

(17)

f1(φ) =
1
2
−

(
1 − φ
φ

)2

ln (1 − φ) −
(

1 − φ
φ

)
(18)

f2(V f ) = −

(
1
2

+
1

1 − V f
+

1
(1 − V f )2 ln

(
V f + χ

))
(19)

where νm is the Poisson’s ratio of the matrix. ρ90 was written to use V f and to emphasize key
ratios, which are E( f )

zz /G
( f )
zr , E( f )

zz /Em, and E( f )
zz /(r f D( f−m)

s ). The last ratio is the only one that
contains a scaling factor or a fiber radius effect. The function f1(φ) decreases smoothly from 0.5
to 0.0 as φ decreases from 1 (solid cylinders) to 0 (thin-walled cylinder). The function f2(V f )
decreases smoothly from 3.21 to 0.0 as V f increases from 0 to 1. This function needs χ = 0.009
for evaluation at V f = 0, but χ should be changed to zero for V f > 0.5. All calculations in this
paper were for V f < 0.5 and thus χ was kept at 0.009.

This author is biased that the shear-lag parameter from his work [3, 8], which is a extension
of prior cylindrical shear lag models by Nayfeh [6] and McCartney [7] to include hollow fibers,
to work at low V f , and to model an imperfect interface, is the preferred shear lag model. This
bias can be justified by the interface term, which introduces scaling effects and makes a shear-lag
analysis worthwhile, and by its accuracy, which can be evaluated by comparison to finite element
calculations (FEA). The average fiber stress from a shear lag analysis is [8]〈

σ
( f )
zz (z)

〉
σ

( f ,∞)
zz

= 1 −
cosh βz

r f

cosh βρ
(20)

This analytical solution is compared to FEA results for a hollow fiber in Fig. 2. The FEA com-
parison confirms that the shear lag analysis using β in Eq. (16) is extremely accurate for axial
stresses and for both perfect and imperfect interfaces. The FEA analysis with an imperfect inter-
face used the same Hashin [10, 11] interface model by using elements described in Ref. [12]. The
normalizing far-field fiber stress was found by concentric cylinders analysis of infinite cylinders
[9] (see the appendix).

Since the shear lag β in Eq. (16) is accurate, alternative shear lag parameters that differ are,
by definition, inaccurate and should be avoided. One notable alternative parameter is found in
the original (and often-cited) fiber/matrix shear lag analysis by Cox [4] (see Eq. (6)). Because
βcox is significantly smaller then β in Eq. (16), it predicts aspect ratio requirements that are an
order of magnitude or more too high (depending on V f ). In brief, no new shear-lag application
should be trusted until it is verified by FEA. The shear lag parameter used here was verified; the
Cox parameter is inaccurate and therefore should never be used.

Some limiting results were found useful. First, most reinforcement is done by fibers that are
much stiffer than the matrix. The stiff-fiber limit, defined as E( f )

zz φ >> Em and G( f )
zr >> Em, is

ρ(stiff)
90 = lim

Em<<E( f )
zz φ, G( f )

zr

ρ90 = 5

√√ 2Em

r f D( f−m)
s

+ 2 f2(V f )(1 + νm)

 1 − V f

V f
(21)
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Figure 2: Average axial fiber stress (as percent of far-field fiber stress) as a function of position (in units of fiber diameters)
by shear-lag analysis (solid curves) or by finite element analysis (dashed curves). The three curves are for three different
values of r f D( f−m)

s in units of MPa. These calculations used Em = 2500 MPa, νm = 0.33, E( f )
zz /Em = 400, E( f )

zz /G
( f )
zr = 10,

r f = 1 µm, r0 = 0.5 µm, φ = 0.75, ρ = 50, and V f = 0.02.

This stiff limit depends only on matrix properties, the interface quality, and the fiber radius.
It is independent of other fiber properties including whether the fiber is solid or hollow (i.e.,
independent of φ). This stiff-fiber limit is infinite as V f → 0, but the full Eq. (17) is well-behaved
as V f → 0 for any fiber stiffness. The result is:

ρ(0)
90 = lim

V f→0
ρ90 = 5

√√
φ

 f1(φ)
E( f )

zz

G( f )
zr

+ 6.42(1 + νm)
E( f )

zz

Em
+

2E( f )
zz

r f D( f−m)
s

 (22)

3. Results

3.1. Single Wall Nanotubes with Perfect Interface

This section considers SWNTs compared to solid AS4 carbon fibers when the interface is
perfect (D( f−m)

s = ∞). When the interface is perfect, the shear-lag parameter is scale invariant
meaning the only differences between SWNTs and large, solid fibers are their moduli and the
φ factor. The key SWNT properties are its radius and wall thickness and its tensile and shear
moduli. Wall thickness estimates vary from 0.066 nm to 0.69 nm [16]; here the thickness was
assumed to be the interlayer graphite spacing or 0.34 nm [16]. The SWNT radius was set to
r f = 0.75 nm or an average of SWNTs with diameters between 1 and 2 nm. These assumptions
resulted in r0 = 0.41 and φ = 0.701. Reports on the axial modulus of SWNTs vary from
220 GPa to 4150 GPa [17]. All calculations here were for reinforcing a typical glassy polymer
with Em = 2.5 GPa and νm = 0.33; thus E( f )

zz /Em is between 88 and 1660. The E( f )
zz /G

( f )
zr ratio

requires knowledge of the SWNT axial shear modulus, which is unknown (note: for orthotropic
materials G( f )

zr is different than a shear modulus that could be determined by torsion experiments
(i.e., G( f )

zθ ), but it might be similar). Here, E( f )
zz /G

( f )
zr was assumed to be the same as it is for solid

AS4 carbon fibers or E( f )
zz /G

( f )
zr = 220/14 = 15.7. This assumption had virtually no influence on

the calculations and thus the E( f )
zz /G

( f )
zr value is relatively unimportant. This observation might
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Figure 3: The minimum fiber aspect ratio, ρ90, as a function of E( f )
zz /Em for various fiber volume fractions. The two solid

curves at each volume fraction are for solid fibers (φ = 1) or hollow fibers (φ = 0.701) (using Eq. (17)). The dashed lines
for V f ≥ 1% are the stiff fiber limit, ρ(stiff)

90 (using Eq. (21)). The vertical dotted lines are expected E( f )
zz /Em ratios for AS4

or SWNT fibers.

change if SWNTs were found to have an anomalously low G( f )
zr . The solid AS4 carbon fiber

properties are r f = 3500 nm, E( f )
zz = 220 GPa, E( f )

zz /G
( f )
zr = 15.7, and φ = 1.

Figure 3 plots the minimum fiber aspect ratio (ρ90) as a function of E( f )
zz /Em for solid and

hollow (with the assumed φ = 0.701) fibers for several volume fractions. The minimum as-
pect ratio increases as E( f )

zz /Em increases, but at a decreasing rate as V f increases. Comparing
volume fractions, the fiber aspect ratio requirements are high for low V f , but decrease dramati-
cally for higher V f . The horizontal dashed lines are the stiff fiber limits. Each volume fraction
asymptotically approaches the stiff limit. For V f ≥ 5%, the stiff fiber limit gives a reasonable
approximation for reinforcement by any stiff fiber. No stiff limit is plotted for V f → 0% because
limV f→0 ρ

(stiff)
90 = ∞. The figure instead plots ρ(0)

90 ; this low V f limit shows the highest required
fiber aspect ratio, which continues to increase as E( f )

zz /Em increases.
Each volume fraction in Fig. 3 has one curve for solid fiber and another for hollow fiber. The

solid curve is always slightly higher. The vertical dashed lines show possible E( f )
zz /Em for AS4

or SWNT fibers (with E( f )
zz = 1250 GPa), respectively. Although the solid ρ90 curves are always

higher than the hollow curves, the intersection of the AS4 properties with the solid curve is al-
ways lower than the intersection of the SWNT properties with the hollow curve. This difference,
however, depends on V f — the fiber aspect ratio intersections for SWNTs are essentially identi-
cal to those for AS4 fiber intersections for V f ≥ 5%, but are slightly higher for V f < 5%. The
largest difference, which may reach a factor of 2, occurs in the limit as V f → 0%. In other words,
ρ90 is rather weakly dependent on φ except at low V f . ρ90 for SWNTs would decrease further
if φ was less than 0.701 as assumed here, but within the range of possible SWNT shapes, the
effect is expected to be small. The much larger effect of φ is as a scaling term in Eq. (1), where
contribution of SWNT modulus to composite modulus is directly reduced by any reduction in φ.

The volume fraction effects for AS4 and SWNT fibers are plotted in Fig. 4. The three curves
for D( f−m)

s = ∞ are the perfect interface results. The AS4 and SWNT fiber aspect ratio require-
ments are virtually identical for V f ≥ 5%. For V f < 5%, SWNT composites would require
slightly higher aspect ratio for excellent reinforcement. At high volume fractions (V f > 20%)
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Figure 4: The minimum fiber aspect ratio, ρ90, as a function of V f for AS4 and SWNT fibers. The D( f−m)
s = ∞ curves

are for a perfect interface. The D( f−m)
s = 85700 (units of MPa/mm) curves are for an imperfect interface. The dashed

lines are the stiff fiber limit, ρ(stiff)
90 .

the fiber aspect ratios become rather modest — ρ90 < 10; thus short fibers should reinforce more
effectively at higher V f . The dashed line is the stiff fiber limit. It is an excellent approximation
for SWNT for V f ≥ 2% and for AS4 for V f ≥ 5%.

3.2. Single Wall Nanotubes with Imperfect Interface

The evaluation of imperfect interface effects requires knowledge of the interface parameter
D( f−m)

s . The most direct way to measure D( f−m)
s is to measure stress transfer into a single fiber.

The results will resemble the axial stresses in Fig. 2. If the fiber and matrix properties are known,
stress analysis can be used to determine D( f−m)

s . This technique was used on HM carbon fibers
embedded in an epoxy matrix. The fiber axial strains were measured by Raman spectroscopy [18]
and interpreted using a Bessel-Fourier analysis [19] resulting in a measured r f D( f−m)

s = 300 MPa
[18] (note that Ds in Refs. [18] and [19] is equivalent to r f D( f−m)

s used here and defined by
Hashin [10]). These same experimental results were reanalyzed by the shear-lag analysis used
here, which gave the same r f D( f−m)

s = 300 MPa [5]. Using r f = 3.5 µm results in D( f−m)
s =

85700 MPa/mm. Imperfect interface theory implies that D( f−m)
s is an interface property that is

independent of the fiber radius. There are no experimental results as a function of fiber radius,
however, to know for sure. The following calculations assumed D( f−m)

s is a material property and
that it is the same for AS4 fibers and SWNTs as it is for HM fibers.

Figure 4 plots the AS4 and SWNT fiber aspect ratio requirements with D( f−m)
s = 85700

MPa/mm. An imperfect interface means that higher aspect ratios are needed before effective
reinforcement can be realized. For AS4 fibers, ρ90 increased 2–4 fold, depending on V f . In
contrast, for SWNTs, ρ90 increased 100–250 fold, depending on V f . The dramatic effect for
SWNTs is caused by their small r f , and the presence of r f in the denominator of the imperfect
interface term. In brief, the interface effects with small-diameter fibers, such as SWNTs, are
much more prominent than in larger-diameter fibers. If the SWNT interface is similar to the
HM fiber interface, then SWNTs are unlikely to ever produce effectively reinforced short fiber
composites.
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It is possible, however, that D( f−m)
s for SWNTs may be dramatically different. First, D( f−m)

s
may not be a material property. The experiments needed to answer this question are to measure
D( f−m)

s as a function of fiber radius for a series of otherwise identical fibers. Second, SWNTs may
have much more favorable interactions with some matrices than HM fibers have with epoxy. For
example a SWNT might constrain an interphase region inducing a stiffening effect that could
result in a negative D( f−m)

s . If such an effect occurs, ρ90 would be similar to the perfect interface
results, or perhaps slightly lower. Conversely, a negative interaction between a SWNT and a
matrix that results in a compliant interphase would be an extremely poor choice for a nano-fiber
composite. Note that negative D( f−m)

s values are limited to the condition that β remain real. Thus
the physically accessible range for D( f−m)

s is

1

D( f−m)
s

> −
r f

2

 f1(φ)

G( f )
zr

+
f2(V f )
Gm

 (23)

The lower limit corresponds to instant stress transfer (i.e., a rigid interphase) with β = ∞ and
ρ90 = 0.

3.3. Multiwall Nanotubes
A MWNT shear lag analysis could be constructed using a model of multiple concentric cylin-

ders and it could account for slippage (or telescoping) between the cylinders by adding an inter-
face parameter for wall-to-wall contact — D(w−w)

s [3, 5]. Assuming the various walls have the
same mechanical properties as a SWNT wall, the only new parameter would be D(w−w)

s . This
complicated, multicylinder analysis, however, is unnecessary. The MWNT results would clearly
fall between the SWNT results for outer wall only (if D(w−w)

s → 0) and SWNT results that con-
sidered all walls as one solid wall (if D(w−w)

s → ∞). Since the results in Figs. 3 and 4 show little
effect on the diameter of the core, the MWNT fiber aspect ratio requirements must be virtually
identical to those of SWNTs.

Once the fiber aspect ratio requirements are met, the overall composite modulus depends on
the product E( f )

zz φ. For SWNT, φ is calculated from radius and wall thickness. For MWNTs, the
effective φ depends on D(w−w)

s . If the walls are free to slip, or telescope under strain, that would
imply that D(w−w)

s ≈ 0. In this limit, the inner walls would carry no stress and the effective φ
should be determined from r f and the inner radius of the outer-most wall. On the other hand, if
the walls are perfectly bonded, the effective φ should be calculated from r f and the inner radius
of the inner-most wall. For partial bonding the effective φ would be between these two limits.
Most descriptions of MWNT suggest that slippage is more likely than perfect bonding. Thus
composites of MWNTs are more likely to reinforce as if they were SWNTs made by removing
the inner walls.

4. Discussion and Conclusions

A simple shear lag analysis of concentric cylinders, when done accurately, provides useful
results about fiber aspect ratio requirements in short fiber composites and about the effective
modulus of aligned short fiber composites. A particularly simple result for aspect ratio is the stiff
limit or ρ(stiff)

90 (see Eq. (21)). This stiff limit is very accurate for V f > 5%. Even for V f < 5% it is
sufficiently accurate that it gives useful results; it is probably not worth the effort to determine the
extra material properties required to use the full ρ90 (see Eq. (17)). It cannot be used in the limit
V f → 0, but then ρ(0)

90 (see Eq. (22)) can be used instead. Based on ρ(stiff)
90 , the fiber aspect ratio
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requirement depends on fiber volume fraction. It is highest for low V f and decreases significantly
at higher V f . The only fiber and matrix properties that affect ρ(stiff)

90 are the group Em/(r f D( f−m)
s ).

This term is an interphase effect. The presence of r f in the denominator is a scaling effect that
could be detrimental to nanocomposites. In other words, the interface quality is more important
in nanocomposites than in composites with micron or larger sized fibers. One should not expect
excellent SWNT composites unless 1/D( f−m)

s is close to zero or slightly negative.
Once aspect ratio requirements are met, the criterion used here implies that η f ≥ 0.9. The

final composite modulus then depends on Em, V f and the product E( f )
zz φ (see E∗c in Eq. (1)), which

is a reduced modulus that is more important to composite properties than is the wall modulus,
E( f )

zz . The reduced modulus can be determined from force-displacement experiments on SWNTs
by normalizing to the entire cross-sectional area rather then the area of the wall material (i.e.,
an easier experiment then determining E( f )

zz because it does not require determination of the wall
thickness). For practical applications, E( f )

zz φ should be reported along with E( f )
zz results. For

MWNTs, E( f )
zz φ should use an effective φ that accounts for contribution of the interior walls. This

effective φ will be between the result based on the outer wall alone and the result that includes
all walls.

The E∗c in Eq. (1) is for aligned, short-fiber composites, which are uncommon materials. But,
given results for aligned short-fiber composites, 2D or 3D random composite properties can be
evaluated by suitable 2D [20] and 3D [21] averaging methods. The resulting random composite
moduli scale with E∗c and thus calculations here are relevant to both aligned and random compos-
ites. Because E∗c is an upper bound modulus, the averaging method also gives an upper bound for
the random composite. By definition, an upper bound modulus is the highest possible modulus
for all possible structures. In other words, all structures, including percolated geometries, must
have a lower modulus. The idea that percolation can provide unexpected properties that violates
upper bounds is a misconception.

One claimed SWNT potential is that because of their remarkable moduli, they could produce
stiff composites at very low fiber volume fraction. Fiber aspect ratio requirements, however, sug-
gest this potential is unlikely to be realized. As V f decreases, the required aspect ratio increases.
In the limit V f → 0, it increases further as E( f )

zz increases. In other words, reinforcement is al-
ways less effective at low V f . Better potential for nanocomposites is more likely at higher V f ,
where the aspect requirements are much smaller — ρ90 can be below 10 for V f around 25%. The
interface is still critical, but favorable SWNT/matrix interactions might stiffen the interphase and
lead to better composites than could be obtained with larger-diameter fibers. These low aspect
ratio requirements at higher V f are lower than prior calculations for short fiber composites (e.g.,
ρ90 ∼ 100 [1], which is too high because it used βcox). Recall, however, that this new ρ90 is
a lower bound. Real materials might require a higher aspect ratio, but the aspect ratio needed
should decrease as V f increases.

The importance of the interface and the lack of experimental results for D( f−m)
s suggests it

would be beneficial to develop a method to measure interface quality. The best experiment is to
directly measure stress transfer into a single fiber using Raman methods [18]. That approach,
however, only works for certain fibers and is beyond the resolution of Raman for SWNTs. One
possible alternative would be to make a series of aligned short-fiber composites with varying fiber
aspect ratio. Two options for characterizing the composites would be to measure the modulus
or to use Raman to measure an average fiber strain. Either of these results would provide an
experimental estimate of η f . With known fiber and matrix properties, the only unknown in η f

would be the interfacial parameter.
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Finally, this paper’s analysis assumes that continuum mechanics for stress transfer applies to
SWNTs. In other words, assuming continuum mechanics is appropriate, what can be said about
the fiber aspect ratio requirements and composite modulus of SWNT reinforced polymers? Such
modeling can guide nanocomposite development. Two key findings here are that fiber aspect ratio
requirements are modest, but only at higher V f , and that the interface is important. Experiments
should focus on higher V f composites and developing new interface characterization methods.
The alternative is to assume that some undiscovered “nano” effect exists and therefore low V f

composites with remarkable properties are possible. The nature of “undiscovered” phenomena,
however, is that they might not exist or if they do exist, they might be detrimental rather then
beneficial.

Appendix

The far-field fiber stress was found by a concentric cylinder analysis for infinite length cylin-
ders [9] amended to allow for a hollow fiber. The FEA calculations here were done for a trans-
versely isotropic fiber. The results for such fibers are

σ
( f ,∞)
zz =

EA +
4νAVm(νA − νm)

Vm
kT

+
V f φ

km
+

φ
Gm
−

φ
GT

 σapp

E∗A
(24)

where E∗A is the effective axial modulus of the concentric cylinders:

E∗A = EAV fφ + EmVm +
4VmV fφ(νA − νm)2

Vm
kT

+
V f φ

km
+

φ
Gm
−

φ
GT

(25)

Here σapp is the total applied stress, EA, νA, kT , and GT are axial modulus, axial Poisson’s ratio,
transverse bulk modulus, and shear modulus of the transversely isotropic fiber and Em, νm, km,
and Gm are the same properties for the isotropic matrix. V f , Vm, and φ are as defined in the text of
this paper. In these equations, the first terms dominate while the second terms account for small
effects due to Poisson’s ratio difference between the fiber and the matrix. A similar analysis
could be done for orthotropic fibers, but results in considerably more complicated expressions.
The solid fiber results in Ref. [9] are recovered by setting φ = 1 and eliminating the GT term.
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