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The printed paper associated with this on-line resourse contains a complete derivation of energy release rate due to
layer cracks for a cross-laminated timber (CLT) panel subjected to in-plane mechanical and residual stresses. While
the analysis in the paper is complete, some details were omitted for brevity. This supplemental information repeats
the derivation with additional details. Although a scientist with a background in mechanics could repeat the paper
derivation, the intent of this resource is to make that process easier. Besides derivation details, this information adds
some other details about derivations and calculation results. The topics covered are:

1. Panel Cracking Energy Release Rate Derivation: Repeats the derivation in the paper for energy release rate due to
layer cracking but fills in omitted details.

2. Uncracked Laminate Properties: Derives properties of CLT with no cracks from laminated plate theory.
3. Generalized and Simplified Analysis for Tensile Moduli: Generalizes the analyses in Hashin (1987) and Nairn

(2017) to apply to panels in which layer and surface layers are different and simplifies the final results.
4. Drying of Surface Layers Compared to Dying All Layers: More detailed calculation of stresses in CLT panels

prepared by drying core and surface layers by different amounts prior to fabrication of the panel.
5. Onset of Delamination: Explains how the paper determined a dimensionless crack density at onset of delamination

to be 1/ρ = 0.55 even though that number never appears in the cited reference.

1 Panel Cracking Energy Release Rate Derivation

Figure 1 shows a unit cell for a three-layer CLT panel with orthogonal cracks in all layers (Hashin, 1987). The core
layer (referred to here as layer 1) has thickness 2t1, cracks on either end at x = ±a, and wood grain at 90◦ to the 1
direction (the core layer is therefore also referred to as the 90◦ layer). The surface layers (referred to here as layer
2) have thickness t2, cracks on either end at y = ±b, and wood grain at 0◦ to the 1 direction (the surface layers are
therefore also referred to as the 0◦ layers). The total thickness is 2h = 2(t1+ t2). Repeating this unit cell leads to panel
with periodic cracks having crack density Da = 1/(2a) in the core layer and Db = 1/(2b) in the surface layers. These
are dimensioned crack density or cracks per unit length in each layer. Once stress an energy are found for the init cell,
the energy in a full CLT panel is found by averaging a collection of unit cells of varying sizes depending on statistical
distributions of crack spacings (2a and 2b) on the panel edges.

The energy release rate due to any increment in fracture area, dA, within a composite with residual thermal stresses
is derived in Nairn (1997) as:

G = Gmech +
V
2

(
2

d 〈σm ·α∆T 〉
dA

+
d 〈σ r ·α∆T 〉

dA

)
(1)

where Gmech is energy released due to mechanical stresses alone, V is total volume, total stress is partitioned into
mechanical and residual stresses σ = σm + σ r, α is thermal expansion tensor, ∆T is difference between current
temperature and the stress-free temperature, and angle brackets indicate a volume-averaged quantity:

〈 f (x,y,z)〉= 1
V

∫
V

f (x,y,z)dV (2)

For in-plane loading, all through-the-thickness (z direction) stress averages will be zero. The two averages needed
here can therefore be rewritten as:

〈σm ·α∆T 〉 = 1
V

[∫
v1

(
σ
(m)
xx α

(1)
xx +σ

(m)
yy α

(1)
yy

)
∆T dV +

∫
v2

(
σ
(m)
xx α

(2)
xx +σ

(m)
yy α

(2)
yy

)
∆T dV

]
(3)

=
2

∑
k=1

Vk

(
σ
(km)
xx α

(k)
xx +σ

(km)
yy α

(k)
yy

)
∆T (4)
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Fig. 1 Unit cell for a CLT panel with orthogonal cracking in all layers. The crack surfaces (which are on both ends) are indicated by gray
planes transverse to wood grain directions in those layers. Layer 1 is core layer with thickness t1 with cracks separated by 2a. Layers 2 are
surface layers with thickness t2 with cracks separated by 2b. Axes (1,2,3) are used to refer to panel properties while (x,y,z) refer to layer
properties.

where vk is dimensioned volume of phase k and Vk = vk/V is volume fraction of phase k. The over-bar indicates a
quantity averaged over volume of one phase such as

σ
(km)
xx =

1
vk

∫
vk

σ
(m)
xx dV (5)

The simplification to phase average stresses is possible because within each phase, the thermal expansion coefficients,
α
(k)
xx and α

(k)
yy , are constants that can be removed from the integrals. Likewise, the residual stress average term can be

rewritten as:

〈σ r ·α∆T 〉=
2

∑
k=1

Vk

(
σ
(kr)
xx α

(k)
xx +σ

(kr)
yy α

(k)
yy

)
∆T (6)

Equation (1) is an exact result for any failure mode. This supplemental information uses it to derive an exact result
for energy release rate due to formation of cracks in layers of a CLT panel caused by applied normal stresses σ10 and
σ20 in the 1 and 2 directions and biaxial residual stresses in the x-y plane. For simplicity, the derivation considers only
residual thermal stresses, but the final form is easily adjusted to acccount for a combination of thermal and moisture
induced residual stress.

The mechanical energy release rate is derived in (Nairn, 1997) as:

Gmech =
d

dA

(
1
2

∫
ST

T0 ·umdS− 1
2

∫
Su

Tm ·u0dS
)

(7)

where T0 is applied traction over loaded surface ST and u0 is applied displacement over fixed surface Su. In addition,
um is surface displacement on ST and Tm is surface traction on Su; each of these are due to mechanical loading only.
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To find Gmech, treat the uncracked surfaces as ST with traction loads ±hσ10/t2 on the uncracked ends in layer 2 and
±hσ20/t1 on the uncracked ends in layer 1. In other words, surface tractions on the unit cell are:

T0 =



(
hσ10

t2
,0,0

)
for x = a, −b < y < b, t1 < |z|< h(

− hσ10
t2

,0,0
)

for x =−a, −b < y < b, t1 < |z|< h(
0, hσ20

t1
,0
)

for y = b, −a < x < a, −t1 < z < t1(
0,− hσ20

t1
,0
)

for y =−b, −a < x < a, −t1 < z < t1
0 otherwise

(8)

From global mechanical panel strains in the two directions (ε(m)
10 and ε

(m)
20 ) and taking the center of the panel as the

origin, end displacements on the uncracked ends are:

um =



(
aε

(m)
10 ,0,0

)
for x = a, −b < y < b, t1 < |z|< h(

−aε
(m)
10 ,0,0

)
for x =−a, −b < y < b, t1 < |z|< h(

0,bε
(m)
20 ,0

)
for y = b, −a < x < a, −t1 < z < t1(

0,−bε
(m)
20 ,0

)
for y =−b, −a < x < a, −t1 < z < t1

(9)

Integrating T0 · um over the entire surface (i.e., treating Su as empty or unit cell having no displacement boundary
conditions), the mechanical energy release rate becomes

Gmech =
1
2

d
dA

(
4
∫ h

t1
dz
∫ +b

−b
dy

hσ10

t2
aε

(m)
10 +2

∫ t1

−t1
dz
∫ +a

−a
dx

hσ20

t1
bε

(m)
20

)
=

V
2

d
dA

(
σ10ε

(m)
10 +σ20ε

(m)
20

)
(10)

where V = 8hab is unit cell volume. The panel strains that result from mechanical loads can be expressed in terms of
effective panel moduli as:

ε
(m)
10 =

σ10

E11(a,b)
− ν12σ20

E11(a,b)
and ε

(m)
20 =−ν12(a,b)σ10

E11(a,b)
+

σ20

E22(a,b)
(11)

where E11(a,b) and E22(a,b) are tensile moduli and ν12(a,b) is Poisson’s ratio for a CLT panel with cracks spacings
a and b in layers 1 and 2, respectively. Substituting these strains into Eq. (10) leads to:

Gmech =
V
2

d
dA

(
σ2

10
E11(a,b)

− 2ν12(a,b)σ10σ20

E11(a,b)
+

σ2
20

E22(a,b)

)
(12)

The next steps are to evaluate the 〈σm ·α∆T 〉 and 〈σ r ·α∆T 〉 terms in Eq. (1) and to express them also in terms
of effective panel mechanical properties (E11(a,b), E22(a,b), and ν12(a,b)). The needed derivations start with the
Levin (1967) equation that takes the following form for CLT:

σ
m ·α(a,b) =

2

∑
k=1

Vkσ (km) ·α(k) =
2

∑
k=1

Vk

(
σ
(km)
xx α

(k)
xx +σ

(km)
yy α

(k)
yy

)
(13)

where σm is any applied mechanical stress, Vk is volume fraction of layer k (which is k = 1 for core layer and k = 2
for both surface layers), and the phase average stresses are averaging mechanical stresses due to applied σm. The
last form is specific for CLT with through-the-thickness average stresses being zero. Comparing to Eq. (4), the Levin
(1967) equation with σm given by in-plane stresses σ10 and σ20 directly gives the first term or

〈σm ·α∆T 〉= σ
m ·α(a,b)∆T = σ10α11(a,b)∆T +σ20α22(a,b)∆T (14)

which again uses zero applied stress in the z direction and α11(a,b) and α22(a,b) are thermal expansion coefficients
(CTE) for a CLT panel with cracks spacings a and b in layers 1 and 2, respectively. We can eliminate panel CTEs
by a second use of the Levin (1967) equation to find effective CTE of a composite material in terms of the panel’s
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effective mechanical properties. First consider mechanical loading in direction 1 only. The Levin (1967) equation now
becomes

σ10α11(a,b)∆T =
2

∑
k=1

Vk

(
σ
(km)
xx α

(k)
xx +σ

(km)
yy α

(k)
yy

)
∆T (15)

where these phase average stresses refer to uniaxial loading. For a two-phase composite (0◦ and 90◦ layers), we can
evaluate total phase average stresses from these six global relations:

σ10 = V1σ
(1)
xx +V2σ

(2)
xx

0 = V1σ
(1)
yy +V2σ

(2)
yy

σ
(1)
xx = Q(1)

xx (ε
(1)
xx −α

(1)
xx ∆T )+Q(1)

xy (ε
(1)
yy −α

(1)
yy ∆T ) (16)

σ
(1)
yy = Q(1)

xy (ε
(1)
xx −α

(1)
xx ∆T )+Q(1)

yy (ε
(1)
yy −α

(1)
yy ∆T )

σ
(2)
xx = Q(2)

xx (ε
(2)
xx −α

(2)
xx ∆T )+Q(2)

xy (ε
(2)
yy −α

(2)
yy ∆T )

σ
(2)
yy = Q(2)

xy (ε
(2)
xx −α

(2)
xx ∆T )+Q(1)

yy (ε
(2)
yy −α

(2)
yy ∆T )

The first two equations are force balance in the two panel directions when loaded only in direction 1. The next four
relate phase average stresses to phase average strains where Q(k)

i j are elements of the laminated plate theory stiffness
tensor for layer k:σ

(k)
xx

σ
(k)
yy

σ
(k)
xy

=

Q(k)
xx Q(k)

xy 0
Q(k)

xy Q(k)
yy 0

0 0 G(k)
xy


 εxx−α

(k)
xx ∆T

εyy−α
(k)
yy ∆T

γxy

 , Q(k)
ii =

E(k)
ii

1−ν
(k)
xy ν

(k)
yx

, and Q(k)
xy =

E(k)
xx ν

(k)
yx

1−ν
(k)
xy ν

(k)
yx

(17)

where G(k)
xy is axial shear modulus of the timber and γxy is in-plane shear strain. The phase average stress terms are

possible because they integrate over volume of a single phase with constant properties. The constant properties can
be removed from the integral. For example:

σ
(1)
xx =

1
v1

∫
v1

[
Q(1)

xx

(
εxx−α

(1)
xx ∆T

)
+Q(1)

xy

(
εyy−α

(1)
yy ∆T

)]
dV

= Q(1)
xx

(
1
v1

∫
v1

εxx dV −α
(1)
xx ∆T

)
+Q(1)

xy

(
1
v1

∫
v1

εyy dV −α
(1)
yy ∆T

)
= Q(1)

xx (ε
(1)
xx −α

(1)
xx ∆T )+Q(1)

xy (ε
(1)
yy −α

(1)
yy ∆T ) (18)

These six equations have eight unknowns (phase average stresses and strains), but for an orthogonally-cracked
CLT unit cell under mechanical loads only (∆T = 0), the two average strains in uncracked layer directions must equal
the global panel strains due to mechanical loading by only σ10 or:

ε
(2m)
xx = ε

(m)
10 =

σ10

E11(a,b)
and ε

(1m)
yy = ε

(m)
20 =− ν12σ10

E11(a,b)
(19)

Solving for the remaining six unknowns, and replacing (1) and (2) with (1m) and (2m) to indicate mechanical stresses,
the needed phase average mechanical stresses are:

σ
(1m)
xx =

Q(1)
xx Q(2)

yy E11(a,b)−Q(1)
xx (Q

(2)
xx Q(2)

yy −Q(2)
xy

2
)V2−Q(2)

xy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)ν12(a,b)V1

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E11(a,b)V1

σ10 (20)

σ
(1m)
yy =

Q(1)
xx Q(2)

yy E11(a,b)−Q(1)
xy (Q

(2)
xx Q(2)

yy −Q(2)
xy

2
)V2−Q(2)

yy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)ν12(a,b)V1

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E11(a,b)V1

σ10 (21)

σ
(2m)
xx =

−Q(1)
xy Q(2)

xy E11(a,b)+Q(1)
xx (Q

(2)
xx Q(2)

yy −Q(2)
xy

2
)V2 +Q(2)

xy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)ν12(a,b)V1

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E11(a,b)V2

σ10 (22)

σ
(2m)
yy =

−Q(1)
xy Q(2)

yy E11(a,b)+Q(1)
xy (Q

(2)
xx Q(2)

yy −Q(2)
xy

2
)V2 +Q(2)

yy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)ν12(a,b)V1

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E11(a,b)V2

σ10 (23)
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Substituting these phase average stresses into Eq. (15) and simplifying leads to:

α11(a,b)∆T = ∆0−
V2∆2

E11(a,b)
+

V1∆1ν12(a,b)
E11(a,b)

(24)

where

∆0 =

(
α
(2)
xx +

Q(1)
xx (α

(1)
xx −α

(2)
xx )+Q(1)

xy (α
(1)
yy −α

(2)
yy )

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

Q(2)
yy

)
∆T (25)

∆1 = −
(
Q(2)

xy (α
(1)
xx −α

(2)
xx )+Q(2)

yy (α
(1)
yy −α

(2)
yy )
)
∆T

Q(1)
xx Q(1)

yy −Q(1)
xy

2

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

(26)

∆2 =
(
Q(1)

xx (α
(1)
xx −α

(2)
xx )+Q(1)

xy (α
(1)
yy −α

(2)
yy )
)
∆T

Q(2)
xx Q(2)

yy −Q(2)
xy

2

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

(27)

To find panel CTE in the 2 direction, consider mechanical loading in direction 2 only. The Levin (1967) equation
now becomes

σ20α22(a,b)∆T =
2

∑
k=1

Vk

(
σ
(km)
xx α

(k)
xx +σ

(km)
yy α

(k)
yy

)
(28)

The first two equations in Eq. (16) change to:

0 = V1σ
(1m)
xx +V2σ

(2m)
xx

σ20 = V1σ
(1m)
yy +V2σ

(2m)
yy

and the two known phase average strains due to mechanical loading (now by only σ20) change to:

ε
(2m)
xx = ε

(m)
10 =−ν21(a,b)σ20

E22(a,b)
and ε

(1m)
yy = ε

(m)
20 =

σ20

E11(a,b)
(29)

Solving for the remaining six unknowns, the needed phase average mechanical stresses are:

σ
(1m)
xx =

−Q(1)
xx Q(2)

xy E22(a,b)+Q(2)
xy (Q

(1)
xx Q(1)

yy −Q(1)
xy

2
)V1 +Q(1)

xx (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)ν21(a,b)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E22(a,b)V1

σ20 (30)

σ
(1m)
yy =

−Q(1)
xy Q(2)

xy E22(a,b)+Q(2)
yy (Q

(1)
xx Q(1)

yy −Q(1)
xy

2
)V1 +Q(1)

xy (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)ν21(a,b)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E22(a,b)V1

σ20 (31)

σ
(2m)
xx =

Q(1)
xx Q(2)

xy E22(a,b)−Q(2)
xy (Q

(1)
xx Q(1)

yy −Q(1)
xy

2
)V1−Q(1)

xx (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)ν21(a,b)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E22(a,b)V2

σ20 (32)

σ
(2m)
yy =

Q(1)
xx Q(2)

yy E22(a,b)−Q(2)
yy (Q

(1)
xx Q(1)

yy −Q(1)
xy

2
)V1−Q(1)

xy (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)ν21(a,b)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )E22(a,b)V2

σ20 (33)

Substituting these phase average stresses into Eq. (28) and simplifying leads to:

α22(a,b)∆T = ∆
′
0−

V1∆1

E22(a,b)
+

V2∆2ν12(a,b)
E11(a,b)

(34)

where

∆
′
0 =

(
α
(1)
yy +

Q(2)
xy (α

(1)
xx −α

(2)
xx )+Q(2)

yy (α
(1)
yy −α

(2)
yy )

Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy

Q(1)
xx

)
∆T (35)

The final term, 〈σ r ·α∆T 〉, cannot use the Levin (1967) equation because residual stresses do not correspond to
a state of applied mechanical stress. We can, however, directly evaluate it by substituting phase averaged residual
stresses into Eq. (6). The phase average residual stresses can be found by solving Eq. (16) when σ10 = 0 and ∆T 6= 0
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and replacing (1) and (2) with (1r) and (2r) to indicate residual stresses. The two known phase average strains due
to thermal loading only are:

ε
(2r)
xx = α11(a,b)∆T and ε

(1r)
yy = α22(a,b)∆T (36)

Solving for the remaining six unknowns, the needed phase average residual stresses are:

σ
(1r)
xx =

−
(
α
(1)
yy −α22(a,b)

)
Q(2)

xy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)V1 +

(
α
(2)
xx −α11(a,b)

)
Q(1)

xx (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )V1

∆T (37)

σ
(1r)
yy =

−
(
α
(1)
yy −α22(a,b)

)
Q(2)

yy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)V1 +

(
α
(2)
xx −α11(a,b)

)
Q(1)

xy (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )V1

∆T (38)

σ
(2r)
xx =

(
α
(1)
yy −α22(a,b)

)
Q(2)

xy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)V1−

(
α
(2)
xx −α11(a,b)

)
Q(1)

xx (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )V2

∆T (39)

σ
(2r)
yy =

(
α
(1)
yy −α22(a,b)

)
Q(2)

yy (Q
(1)
xx Q(1)

yy −Q(1)
xy

2
)V1−

(
α
(2)
xx −α11(a,b)

)
Q(1)

xy (Q
(2)
xx Q(2)

yy −Q(2)
xy

2
)V2

(Q(1)
xx Q(2)

yy −Q(1)
xy Q(2)

xy )V2

∆T (40)

Substituting these phase average residual stresses into Eq. (6) and simplifying results in

〈σ r ·α∆T 〉=V1∆1
(
α
(1)
yy −α22(a,b)

)
∆T +V2∆2

(
α
(2)
xx −α11(a,b)

)
∆T (41)

Substituting Eqs. (12), (14) and (41) into Eq. (1) gives:

G =
V
2

d
dA

[
σ2

10
E11(a,b)

− 2ν12(a,b)σ10σ20

E11(a,b)
+

σ2
20

E22(a,b)
+2σ10α11(a,b)∆T +2σ20α22(a,b)∆T

-V1∆1α22(a,b)∆T −V2∆2α11(a,b)∆T

]
(42)

where derivatives of constant α
(1)
yy and α

(2)
xx terms in Eq. (41) with respect to fracture area, dA, are zero because

those are constant phase properties. Eliminating effective panel CTEs using Eqs. (24) and (34) (and using d∆0/dA =
d∆ ′0/dA=0) gives:

G =
V
2

d
dA

[
σ2

10
E11(a,b)

− 2ν12(a,b)σ10σ20

E11(a,b)
+

σ2
20

E22(a,b)
− 2σ10V2∆2

E11(a,b)
+

2σ10V1∆1ν12(a,b)
E11(a,b)

− 2σ20V1∆1

E22(a,b)

+
2σ20V2∆2ν12(a,b)

E11(a,b)
+

V 2
1 ∆ 2

1
E22(a,b)

− V1∆1V2∆2ν12(a,b)
E11(a,b)

+
V 2

2 ∆ 2
2

E11(a,b)
− V2∆2V1∆1ν12(a,b)

E11(a,b)

]

=
V
2

d
dA

[
σ2

10−2σ10V2∆2 +V 2
2 ∆ 2

2
E11(a,b)

−
2ν12(a,b)

(
σ10σ20−σ10V1∆1−σ20V2∆2 +V1∆1V2∆2

)
E11(a,b)

+
σ2

20−2σ20V1∆1 +V 2
1 ∆ 2

1
E22(a,b)

]

=
V
2

d
dA

[
σ
∗
1

2 1
E11(a,b)

−2σ
∗
1 σ
∗
2

ν12(a,b)
E11(a,b)

+σ
∗
2

2 1
E22(a,b)

]
(43)

where σ∗i are effective stresses:

σ
∗
1 = σ10−V2∆2 and σ

∗
2 = σ20−V1∆1 (44)

Equation (43) is an exact expression for energy release rate for cracking in a CLT panel under combined in-plane
mechanical loads and residual thermal stresses.
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One more simplification is possible. For cracking only in layer 1 where a changes but b remains constant, the total
G must scale with a sum of mechanical and residual stresses (Nairn, 1997). As a consequence, the key terms:

σ
∗
1

2
(

d
dA

1
E11(a,b)

)
b
−2σ

∗
1 σ
∗
2

(
d

dA
ν12(a,b)
E11(a,b)

)
b
+σ

∗
2

2
(

d
dA

1
E22(a,b)

)
b

(45)

must be complete square in effective stresses and therefore it must be that:(
d

dA
ν12(a,b)
E11(a,b)

)
b
=

√(
d

dA
1

E11(a,b)

)
b

(
d

dA
1

E22(a,b)

)
b

(46)

Expressed another way (as done by McCartney (1993) who derived if by different methods), an exact relation between
derivatives of effective panel properties is:(

d
dA

ν12(a,b)
E11(a,b)

)
b(

d
dA

1
E11(a,b)

)
b

=

(
d

dA
1

E22(a,b)

)
b(

d
dA

ν12(a,b)
E11(a,b)

)
b

(47)

An analogous expression holds for cracking in only layer 2 where b changes but a remains constant. These results
were confirmed by stress modeling as a function of crack density using results in Nairn (2017). Substitution of this
exact relation into Eq. (43) leads to

G =
V σ∗0

2

2
d

dA

[
ξ√

E11(a,b)
+

1−ξ√
E22(a,b)

]2

(48)

where σ∗0 = σ∗1 +σ∗2 and ξ = σ∗1 /σ∗0 . Because this result uses the relation that assumes cracking in one layer only,
it only holds for changes in a or b while the other one remains constant. It can be used to predict cracking in either
layer by considering a sequence of alternating layer cracking events.

Although this above analysis considered only residual thermal stresses, the results are trivially extended to com-
bine thermal and moisture residual stresses by replacing all instances of α

(k)
ii ∆T with α

(k)
ii ∆T +β

(k)
ii ∆c. These terms

only enter the ∆i terms.

2 Uncracked Laminate Properties

Several calculations in the paper depend on uncracked laminate properties — E0
11, E0

22, ν0
12, ν0

21, α0
11, and α0

22. If
the hypothetical, uncracked CLT panel is consider to be a laminate of homogeneous layers, these properties are
easily calculated with a special case of laminated plate theory (Christenson, 1979) for in-plane loading of a laminate
consisting only of 0◦ and 90◦ plies. The force (Ni j) and resultants for a symmetric n-layer composite are given by:N11

N22
N12

=

A11 A12 A16
A12 A22 A26
A16 A26 A66

 ε0
11

ε0
22

γ0
12

 (49)

where ε0
i j are in-plane strains applied to the laminate, and

Ai j =
n

∑
k=1

Q(k)
i j t(k) and (50)

where Q(k)
i j are elements of the plane-stress stiffness matrix for layer k. For a CLT panel, the only non-zero elements

of the A matrix are:

A11 = 2h(V1Q(1)
xx +V2Q(2)

xx ) = 2h〈Qxx〉 (51)

A12 = 2h(V1Q(1)
xy +V2Q(2)

xy ) = 2h〈Qxy〉 (52)

A22 = 2h(V1Q(1)
yy +V2Q(2)

yy ) = 2h〈Qyy〉 (53)

A66 = 2h(V1G(1)
xy +V2G(2)

xy ) = 2h〈Gxx〉 (54)
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where angle brackets average that property over all layers. The mechanical properties of the laminate can be derived
from:

E0
11 =

1
2ha11

, E0
11 =

1
2ha22

, ν
0
12 =−

a21

a11
, and ν

0
12 =−

a21

a22
(55)

where a = A−1. In terms of elements of the A matrix, these properties are:

E0
11 =

A11A22−A2
12

2hA22
, E0

11 =
A11A22−A2

12
2hA11

, ν
0
12 =

A12

A22
, and ν

0
12 =

A12

A11
(56)

Substituting the above results for Ai j gives:

E0
11 = 〈Qxx〉(1−ν

0
21ν

0
12), E0

22 = 〈Qyy〉(1−ν
0
21ν

0
12), ν

0
12 =

〈Qxy〉
〈Qyy〉

, and ν
0
21 =

〈Qxy〉
〈Qxx〉

(57)

Laminated plate theory can also be used to find α0
11 and α0

22, but the results are the same as α11(a,b) and α22(a,b) in
the paper by replacing E11(a,b), E22(a,b) and ν12(a,b) with E0

11, E0
22, and ν0

12.

3 Generalized and Simplified Analysis for Tensile Moduli

The analysis for tensile moduli in a CLT panel with possibly different layers is done by finding the complementary
energy in the panel based on an assumed stress state. The assumed stress state is posed in terms of two unknown
functions that are found by minimizing the complementary energy. Once the functions are found, they are substituted
back into the complementary energy to calculate a lower bound on the two in-plane tensile modulus, E11(a,b) and
E22(a,b). The background details are found in Hashin (1987) and Nairn (2017). This sections repeats those analyses
to work when the surface and core layers are different. This section also shows how the simplified expressions given
in the paper are derived.

The analysis begins with the following 3D “perturbation” stress state for layers 1 and 2 (Hashin, 1987; Nairn,
2017) when loading in direction i = 1 or 2. Using the nomenclature from Nairn (2017), those stresses are:

σ
(1)
xx =−σ0kxiφi(x) σ

(2)
xx = 1

λi
σ0kxiφi(x) σ

(1)
xy = 0 σ

(2)
xy = 0

σ
(1)
yy =−σ0kyiψi(y) σ

(2)
yy = 1

λi
σ0kyiψi(y) σ

(1)
xz = σ0kxiφ

′
i (x)z σ

(2)
xz = 1

λi
σ0kxiφ

′
i (x)(h− z)

(58)

σ
(1)
yz = σ0kyiψ

′
i (y)z σ

(1)
zz =

{
σ0
[
kxiφ

′′
1 (x)+ kyiψ

′′
1 (y)

] 1
2 (ht1− z2) direction 1

−σ0
[
kxiφ

′′
2 (x)+ kyiψ

′′
2 (y)

] 1
2 z2 direction 2

(59)

σ
(2)
yz =

1
λi

σ0kyiψ
′
i (y)(h− z) σ

(2)
zz =

{
σ0
[
kxiφ

′′
1 (x)+ kyiψ

′′
1 (y)

] 1
2λi

(h− z)2 direction 1
σ0
[
kxiφ

′′
2 (x)+ kyiψ

′′
2 (y)

] 1
2λi

(
h(t2−2z)+ z2

)
direction 2

(60)

where φi(x) and ψi(y) are four unknown functions (two for each loading direction), λ1 = t2/t1, and λ2 = t1/t2. The
stiffnesses, kxi and kyi, give the stress in layer 1 of the uncracked laminate due to uniaxial load in direction i and are
easily calculated from laminated plate theory. The only non-zero initial stresses needed in the analysis are:

σ
(1,0)
xx = kxiσ0 and σ

(1,0)
yy = kyiσ0 (61)

The term “perturbation” stresses means the change in stresses between a hypothetical panel with no cracks and a
panel with crack spacings a and b in the core and surface layers, respectively. The boundary conditions for φi(x) and
ψi(y) assume the crack surfaces are stress free. Note that by exploiting an assumption that all layers are the same,
Nairn (2017) derived the loading direction 2 result by interchanging the meaning of layers 1 and 2. In other words,
for direction 2, layer 1 is surface layer and layer 2 is core layer. This approach does not work when the layers have
different properties, but accounting for different properties is easily done by generalizing the complementary energy
calculation. Also note that kxi and kyi are referred to in the current paper as “influence coefficients” for translation of
applied mechanical stress into layer stresses in the uncracked panel (these coefficients are defined in the paper). Note
that compared to Nairn (2017), the influence coefficients defined in the current paper are k(1)x1 = kx1 and k(1)y1 = ky1 but

because Nairn (2017) rotated x and y for loading in direction 2, k(2)x2 = ky2 and k(2)y2 = kx2.
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We need to find Uci or the complementary energy calculated from perturbation stresses alone when loading only
in direction i, which is given by:

Uci =
1
2

∫
σ ·Sσ dV = t2

i

∫
ρi

−ρi

∫
χi

−χi

(∫ t1

0
W (1) dz+

∫ h

t1
W (2) dz

)
dη dξ (62)

where ξ = x/ti and η = y/ti are dimensionless coordinates and ρ1 = a/t1, ρ2 = b/t2, χ1 = b/t1, and χ2 = a/t2 are
dimensionless crack spacings. This equation is again using the notation from Nairn (2017), but note that the direction
2 analysis in that paper rotated meaning of x and y axes. The terms W (1) and W (2) are complementary energy in each
layer. Generalizing that calculation for different surface or core layers when loading in the 1 direction:

2W (1) =
σ
(1)
xx

2

E(1)
xx

+
σ
(1)
yy

2

E(1)
yy

+
σ
(1)
zz

2

E(1)
zz

− 2σ
(1)
yy (ν

(1)
yx σ

(1)
xx +ν

(1)
yz σ

(1)
zz )

E(1)
yy

− 2ν
(1)
xz σ

(1)
xx σ

(1)
zz

E(1)
xx

+
σ
(1)
yz

2

G(1)
yz

+
σ
(1)
xz

2

G(1)
xz

(63)

2W (2) =
σ
(2)
xx

2

E(2)
xx

+
σ
(2)
yy

2

E(2)
yy

+
σ
(2)
zz

2

E(2)
zz

− 2σ
(2)
yy (ν

(2)
yx σ

(2)
xx +ν

(2)
yz σ

(2)
zz )

E(2)
yy

− 2ν
(2)
xz σ

(2)
xx σ

(2)
zz

E(2)
xx

+
σ
(2)
yz

2

G(2)
yz

+
σ
(2)
xz

2

G(2)
xz

(64)

where E, G, and ν are anisotropic mechanical properties of core (superscript 1) and surface (superscript 2) layers.
The subscripts x and y on mechanical properties refer to x and y axes in Fig. 1. For loading in direction 2, W (1) and
W (2) refer to complementary energy in surface and core layers (i.e., meaning of 1 and 2 have been interchanged).
Recognizing the change in notation, the complementary energies in the surface layer (now W (1)) and the core layer
(now W (2)) that generalize Nairn (2017) for different layer properties are:

2W (1) =
σ
(1)
xx

2

E(2)
yy

+
σ
(1)
yy

2

E(2)
xx

+
σ
(1)
zz

2

E(2)
zz

− 2σ
(1)
yy (ν

(2)
xy σ

(1)
xx +ν

(2)
xz σ

(1)
zz )

E(2)
xx

− 2ν
(2)
yz σ

(1)
xx σ

(1)
zz

E(2)
yy

+
σ
(1)
yz

2

G(2)
xz

+
σ
(1)
xz

2

G(2)
yz

(65)

2W (2) =
σ
(2)
xx

2

E(1)
yy

+
σ
(2)
yy

2

E(1)
xx

+
σ
(2)
zz

2

E(1)
zz

− 2σ
(2)
yy (ν

(1)
xy σ

(2)
xx +ν

(1)
xz σ

(2)
zz )

E(1)
xx

− 2ν
(1)
yz σ

(2)
xx σ

(2)
zz

E(1)
yy

+
σ
(2)
yz

2

G(1)
xz

+
σ
(2)
xz

2

G(1)
yz

(66)

Note that superscripts on stresses refer to stress state in Eq. (60) (i.e., using nomenclature from Nairn (2017)). In
contrast, superscripts on mechanical properties are now using 1 and 2 for core and surface layers, which may differ.
Also note that layer properties are accounting for interchange of x and y axes done in the Nairn (2017) analysis for
loading direction 2. The subscripts x and y here are mechanical properties along x and y axes in Fig. 1.

Substituting W (1) and W (2) for direction i = 1 loading into Eq. (62) and much (easy) algebra leads to

2Uc1 = σ
2
0 t3

1

∫
ρ1

−ρ1

∫
χ1

−χ1

(
A0kx1

2
φ

2 +2B0kx1ky1φψ +C0ky1
2
ψ

2 +A1kx1
2
φ
′2 +B1ky1

2
ψ
′2

+A2kx1φ(kx1φ
′′+ ky1ψ

′′)+B2ky1ψ(kx1φ
′′+ ky1ψ

′′)+C2(kx1φ
′′+ ky1ψ

′′)2)dξ dη (67)

where φ = φ1(ξ ) and ψ = ψ1(η) and the constants are

A0 =
1

E(1)
xx

+ 1
λE(2)

xx
B0 =−

(
ν
(1)
yx

E(1)
yy

+
ν
(2)
yx

λE(2)
yy

)
C0 =

1
E(1)

yy
+ 1

λE(2)
yy

A1 =
1

3G(1)
xz

+ λ

3G(2)
xz

B1 =
1

3G(1)
yz

+ λ

3G(2)
yz

A2 =
(3λ+2)ν(1)

xz

3E(1)
xx

− λν
(2)
xz

3E(2)
xx

B2 =
(3λ+2)ν(1)

yz

3E(1)
yy

− λν
(2)
yz

3E(2)
yy

C2 =
1

60

(
8+20λ+15λ 2

E(1)
zz

+ 3λ 3

E(2)
zz

) (68)

and λ = λ1 = t2/t1
Substituting W (1) and W (2) for direction i = 2 loading into Eq. (62) and much (easy) algebra leads to

2Uc1 = σ
2
0 t3

2

∫
ρ2

−ρ2

∫
χ2

−χ2

(
A′0kx2

2
φ

2 +2B′0kx2ky2φψ +C′0ky2
2
ψ

2 +A′1kx2
2
φ
′2 +B′1ky2

2
ψ
′2

+A′2kx2φ(kx2φ
′′+ ky1ψ

′′)+B′2ky2ψ(kx2φ
′′+ ky2ψ

′′)+C′2(kx2φ
′′+ ky2ψ

′′)2)dξ dη (69)
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where φ = φ2(ξ ) and ψ = ψ2(η) and the constants are

A′0 =
1

E(2)
yy

+ 1
λ2E(1)

yy
B′0 =−

(
ν
(2)
xy

E(2)
xx

+
ν
(1)
xy

λ2E(1)
xx

)
C′0 =

1
E(2)

xx
+ 1

λ2E(1)
xx

A′1 =
1

3G(2)
yz

+ λ2

3G(1)
yz

B′1 =
1

3G(2)
xz

+ λ2

3G(1)
xz

A′2 =
(3+2λ2)ν

(1)
yz

3E(1)
yy

− ν
(2)
yz

3E(2)
yy

B′2 =
(3+2λ2)ν

(1)
xz

3E(1)
xx

− ν
(2)
xz

3E(2)
xx

C′2 =
1

60

(
8λ 2

2 +20λ2+15

E(1)
zz

+ 3
E(2)

zz

) (70)

Noting that λ2 = 1/λ , all primed constants for loading in direction 2 can be expressed in terms of direction 1 constants
using:

A′0 = λC0, B′0 = λB0, C′0 = λA0, A′1 =
B1

λ
,B′1 =

A1

λ
, A′2 =

B2

λ
, B′2 =

A2

λ
. C′2 =

C2

λ 3 (71)

The next steps are to minimize complementary energy in each direction to solve for unknown functions φ1(ξ ),
ψ1(η), φ2(ξ ), and ψ2(η) and then substitute them back into complementary energy to find modulus. Because the
complementary energies are expressed in terms of constants (Ai, Bi, and Ci), the solution methods given in Hashin
(1987) and Nairn (2017) are the same and need not be repeated. In other words, the only change needed to account
for different core and surface layer properties is to use a different set of constants. The solution process is described
in the body and appendix of Hashin (1987). The Online Resource for Nairn (2017) extends the solution to loading
in direction 2 (note: that Online Resource has a few typos in preliminary equations, but final expressions for the
solutions are correct). The new form given in the “Explicit Calculations” section of the current paper coordinates all
those solutions into a single function that resulted from minimizing complementary energies. Thus the current paper
includes sufficient equations to do all calculations presented in the paper.

4 Drying of Surface Layers Compared to Dying All Layers

Imagine a CLT panel in which the moisture content of layer k is ∆ck relative to the equilibrium moisture content
of the panel after fabricated and left to reach equilibrium moisture content. The panel dimensions will change from
initial bonding to equilibrium. For sample calculations, it suffices to consider a panel with no cracks. After reaching
equilibrium, the global panel strains will change to ε11 and ε22 and will be same in all layers. The global relations for
this problem are:

0 = V1σ
(1r)
xx +V2σ

(2r)
xx

0 = V1σ
(1)
yy +V2σ

(2)
yy

σ
(1r)
xx = Q(1)

xx (ε11−β
(1)
xx ∆c1)+Q(1)

xy (ε22−β
(1)
yy ∆c1) (72)

σ
(1)
yy = Q(1)

xy (ε11−β
(1)
xx ∆c1)+Q(1)

yy (ε22−β
(1)
yy ∆c1)

σ
(2)
xx = Q(2)

xx (ε11−β
(2)
xx ∆c2)+Q(2)

xy (ε22−β
(2)
yy ∆c2)

σ
(2)
yy = Q(2)

xy (ε11−β
(2)
xx ∆c2)+Q(1)

yy (ε22−β
(2)
yy ∆c2)

This analysis assumes only moisture induced residual stresses (∆T = 0) and considers layers drier than panel equilib-
rium, ∆ck > 0. Solving these six equation can calculate the transverse stresses in layers 1 and 2. The results are long
expressions and therefore two special cases are given instead. Both special cases assume identical layer properties.
The first case assumes surface layers are dried such that ∆c2 > 0 but core layers are at eventual equilibrium moisture
content or ∆c1 = 0. The transverse stresses in the layers become:

σ
(1r)
xx =

(
βxxQxy +βyy(V1Qyy +V2Qxx)

)
(QxxQyy−Q2

xy)V2

V1V2(Q2
xx +Q2

y)−Q2
xy +(V 2

1 +V 2
2 )QxxQyy

∆c2 (73)

σ
(2r)
yy = −

(
βyyQxy +βxx(V1Qxx +V2Qyy)

)
(QxxQyy−Q2

xy)V1

V1V2(Q2
xx +Q2

y)−Q2
xy +(V 2

1 +V 2
2 )QxxQyy

∆c2 (74)
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Fig. 2 The critical crack densities for delamination as functions of the number of 90◦plies in half of the symmetric laminate. The three
curves are for different (S) sublaminates supporting the 90◦ plies. The dashed red curve plots a prediction that onset of delamination reaches
dimensionless crack spacing of 0.55 independent of layup type and layer thickness.

where superscripts on properties are dropped because both layers are the same. For the second case assume all layers
are dried below equilibrium by equal amounts or ∆c1 = ∆c2 > 0. The transverse stresses in the layers become:

σ
(1r)
xx =

(βxx−βyy)(V1Qyy +V2Qxx−Qxy)(QxxQyy−Q2
xy)V2

V1V2(Q2
xx +Q2

y)−Q2
xy +(V 2

1 +V 2
2 )QxxQyy

∆c2 (75)

σ
(2r)
yy = −

(βxx−βyy)(V1Qxx +V2Qyy−Qxy)(QxxQyy−Q2
xy)V1

V1V2(Q2
xx +Q2

y)−Q2
xy +(V 2

1 +V 2
2 )QxxQyy

∆c2 (76)

For specific numbers, use the wood properties given in the paper and apply to a three-layer CLT panel (V1 = 1/3
and V2 = 2/3). If only surface layers are dried to ∆c2 = 3% below equilibrium core layers, the transverse stress in
surface layers would be -4.21 MPa and in core layers would be +0.50 MPa. The surface layers do go into compression,
but the core layers have tensile residual stresses that would promote cracking. If both layers are dried to ∆c1 = ∆c2 =
3% below panel equilibrium moisture constant, the transverse stress in surface layers would be -3.96 MPa and in
core layers would be -4.18 MPa. Compared to drying only the surface layers, drying all layers gives about same
compression in the surface and a beneficial level of compression in the core layers.

5 Onset of Delamination

The paper cites Nairn and Hu (1992) that if layer cracking toughness is equal to crack propagation toughness that
delamination is predicted to start when dimensionless crack density is equal to 1/ρ = 0.55. That paper actually never
presents this number, but does plot the dimensioned crack density at the onset of delamination for several different
layups as as a function of the thickness of the 90◦ layers. The dimensioned and dimensionless crack density are related
by:

D =
1

2ρt1
(77)

Thus, if we assume the critical dimensionless crack density is a constant (and equal to 0.55) and note that all cal-
culations in Nairn and Hu (1992) used 2t1 = 0.14 mm for ply thickness, the layup independent prediction would be
Donset = 0.55/(0.14∗2∗n) where n is the number of plies in half the laminate (which is the x axis in Figure 5 from
Nairn and Hu (1992)). Figure 2 superposes this new result on the calculations in Figure 5 from Nairn and Hu (1992).
The results are very similar. In fact, it would have be better for Nairn and Hu (1992) to have interpreted results using
dimensionless crack density, but that was not realized at the time.
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