
(Proceedings of the 5th Technical Conference on Composite Materials, American Society of Composites,
East Lansing, Michigan, June 11-14, 1990).

Fracture Mechanics Analysis of Composite Microcracking:
Experimental Results in Fatigue

S. LIU AND J. A. NAIRN †

ABSTRACT

A recent variational mechanics analysis gives the energy release rate due to the formation of a
new microcrack between two exisiting microcracks (John A. Nairn, J. Comp. Mat., 23, 1106 (1989)).
This analysis has been useful in providing fracture mechanics interpretation of matrix microcracking
in cross-ply laminates. This paper describes using the new energy relase rate analysis for a fracture
mechanics based interpretation of microcrack formation during fatigue loading. Fatigue experiments
were run of three layups of AvimidR© K Polymer/IM6 laminates and on four layups of Fiberite 934/T300
laminates. A modifed Paris-law was used and the data from all layups of a single material system were
found to fall on a single master Paris-law plot. We claim that the master Paris-law plot gives a complete
characterization of a given material system’s resistance to microcrack formation during fatigue laoding.

INTRODUCTION

Many observations have confirmed that the initiation of damage in multidirectional laminates is
often by microcracks in the off-axis plies that run parallel to the fibers in those plies [1–8]. These
microcracks have typically been studied in cross-ply laminates in which the cracks form in the 90◦

plies [1–8]. Microcracks form during static testing [1–8], during fatigue testing [3,9,10], and during
thermal cycling [11]. Because microcracks cause a reduction in stiffness [3], a change in the thermal
expansion coefficient [12,13], and provide sites for the initiation of delaminations, it is important to gain
a quantitative understand of the formation and propagation of microcracks during both monotonic
loading (static tests) and during cyclic loading (fatigue tests).

Some attempts at analysis of microcracking have been based on ply strength theories [2,14]. As
pointed out by Flaggs and Kural [5], however, strength based theories are fundamentally inappropriate
and most recent work has been based on energy release rate calculations [4,6,7,15–17]. Early energy
release rate analyses were based on the shear-lag model [4,6,7,15] or on shear-lag type assumptions [16].
These types of analyses are probably too qualitative to be useful. A more recent energy release rate
analysis [17] uses the improved stress analysis technique developed by Hashin [18,19]. The improved
stress analysis is based on variational mechanics principles and has been shown to accurately predict
stiffness reduction [18,19]. In Ref. [17] the variational approach was modifed to include thermal stresses
and used to calculate the energy release rate due to the formation of microcracks. The new energy
release rate analysis has been sucessuful in predicting the microcrack density as a function of applied
load during static testing in a variety of composite material systems [17,20]. In this paper, we make
further use of the new fracture analysis described in Ref. [17] to give a fracture mechanics interpretation
of the propagation of microcracks during fatigue testing. The fracture mechanics interpretation is based
on a modifed Paris-law approach.
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288 MECHANICS I: EXPERIMENTAL

Figure 1: Edge view of a cross-ply laminate with microcracks. A: Two microcracks in the

90◦ plies. B: The formation of a new microcrack at a distance 2δt1 above the bottom

microcrack.

MATERIALS AND METHODS
Fatigue experiments were run on two types of cross ply laminates of generic layup [0m/90n]s. The

first material system was supplied by DuPont and consisted of AvimidR© K Polymer/IM6 graphite fiber
laminates. These laminates were fabricated by DuPont using recently developed optimal processing
techniques [21]. The second material system was provided by ICI/Fiberite and consisted of Fiberite 934
epoxy/T300 graphite fiber laminates. This material was supplied in prepreg form and was laminated
by R-Cubed Composites in Salt Lake City, Utah, according to maufacturer’s recommendations.

The fatigue tests were run on an MTS 25 kN servohydraulic testing frame using load control.
The load span was set to cycle between a maximum stress, σmax, and small positive stress; in other
words, the stress span, ∆σ0, was approximately equal to σmax. The cycling rate was usually 5 Hz. A
few experiments were done using a lower rate of 1 Hz and the results were identical to the results at
5 Hz. During the fatigue test, the load cycling was periodically stopped and the microcrack density
was measured by examining the sample edges under an optical microscrope and counting the cracks.
The measurement was done on both edges of the flat specimens and the results were averaged. The
sample dimensions were nominally 12 mm wide and 150 mm long; the thicknesses were determined by
the stacking sequence.

FRACTURE ANALYSIS
Figure 1 shows the process of forming a new microcrack at some location between two existing

microcracks. A recent thermoelastic variational mechanics analysis has been developed [17] which gives
the total energy released due to the formation of the microcrack illustrated in Fig. 1. In this section,
we summarize the analysis of Ref. [17].

Consider a laminate loaded by a tensile stress of σ0 in the x direction. When that laminate is
uncracked and at the stress free temperature, T0, the only nonzero stresses will be the x axis tensile
stresses in the 0◦ and 90◦ plies:

σ
(1)
x0 = k1σ0 and σ

(2)
x0 = k2σ0 (1)
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where k1 and k2 are effective stiffnesses and the supersripts (1) and (2) denote stresses in the 90◦

and 0◦ plies, respectively. The stiffnesses k1 and k2 can be found by laminated plate theory or, with
sufficient accuracy, by a constant strain assumption whereby

k1 =
ET

Ec
and k2 =

EA

Ec
(2)

In Eq. (2), EA and ET are the axial and transverse moduli of the ply material, and Ec is the x-direction
modulus of the cross-ply laminate. Next change the temperature to Ts, the specimen temperature, and
form the two cracks illustrated in Fig. 1A at x = ±a. These changes will cause the stresses in the
laminate to change. Following Hashin [18,19] we make one and only one assumption — that the x-axis
tensile stresses in each ply depend only on the axial coordinate x and are independent of the thickness
coordinate z. Under this assumption the stresses in the 90◦ and 0◦ plies will change to

σ(1)
x = σ

(1)
x0 − ψ1(x) and σ(2)

x = σ
(2)
x0 − ψ2(x) (3)

where ψ1(x) and ψ2(x) are yet to be determined functions of x. By inserting the stresses in Eq. (3)
into the stress equilibrium equations and making use of the obvious boundary conditions, it is possible
to express all stresses in terms of ψ(x) = ψ1(x) [17–19]:

σ(1)
x = σ

(1)
x0 − ψ(x)

σ(2)
x = σ

(2)
x0 − t1

t2
ψ(x)

σ(1)
xz = ψ′(x)z

σ(2)
xz =

t1
t2
ψ′(x)(h− z)

σ(1)
z =

1
2
ψ′′(x)(ht1 − z2)

σ(2)
z =

t1
2t2

ψ′′(x)(h− z)2
(4)

As can be verifed by substitution, the stress state in Eq. (4) satisfies equilibrium, traction boundary
conditions, and interface stress continuity, and is therefore an admissible stress state. By the principal
of minimum complementary energy, the function ψ(x) that minimizes the complementary energy
will give the best approximation to the cracked cross-ply laminate thermoelastic stress state. The
complementary energy can be minimized using the calculus of variations. The final result, quoted from
Ref. [17] is

ψ =
(
σ

(1)
x0 − ∆αT

C1

)
φ+

∆αT
C1

(5)

where ∆α = αT − αA (the difference between the transverse and longitudinal thermal expansion
coefficients), T = Ts − T0, and φ is

φ =
2(β sinhαρ cosβρ+ α coshαρ sinβρ)

β sinh 2αρ+ α sin 2βρ
coshαξ cosβξ

+
2(β coshαρ sinβρ− α sinhαρ cosβρ)

β sinh 2αρ+ α sin 2βρ
sinhαξ sinβξ

(6)

In Eq. (6), ρ = a/t1, ξ = x/t1,

α =
1
2

√
2
√
q − p and β =

1
2

√
2
√
q + p (7)

Finally, p = (C2 − C4)/C3, q = C1/C3, and the constants C1 to C4 are functions of the mechanical
properties and thicknesses of the plies:

C1 =
hE0

t2EAET

C3 =
λ+ 1
60ET

(
3λ2 + 12λ+ 8

)
C2 =

νT

ET

(
λ+

2
3

)
− λνA

3EA

C4 =
1
3

(
1
GT

+
λ

GA

) (8)

The new terms in Eq. (8), GA, GT , νA, and νT , are the axial and transverse shear moduli and Poisson’s
ratio, respectively, and λ = t2/t1. Note that the above solution is specific for 4q/p2 > 1. This inequality
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will hold for the composite specimens discussed in this paper. The solution for 4q/p2 < 1 is given in
Ref. [17].

Before embarking on the fracture and fatigue analysis, we quote some additional results from
Ref. [17]. Consider a sample with N microcracks characterized by crack spacings ρ1, ρ2, . . . , ρN . The
sample compliance is (cf. Eq. (38) in Ref. [17])

C = C0 +
E2

T

E2
c

2C3t1L

B2W

∑N
i=1 χ(φi)∑N

i=1 ρi

(9)

where B = 2h is the total thickness, W is the sample width (y-direction dimension), L is the sample
length (x-direction dimension), and C0 = L/BEcW is the compliance of the uncracked sample. The
new function χ(ρ) for 4q/p2 > 1 is

χ(ρ) = 2αβ
(
α2 + β2

) cosh 2αρ− cos 2βρ
β sinh 2αρ+ α sin 2βρ

(10)

The result for χ(ρ) when 4q/p2 < 1 is given in Ref. [17]. The total strain energy in the N crack intervals
is (cf. Eq. (43) in Ref. [17])

U =
(
σ2

0

2Ec
+
t1∆α2T 2

BC1

)
BWL+ (C − C0)

B2W 2E2
c

2E2
T

(
E2

T

E2
c

σ2
0 − ∆α2T 2

C2
1

)
(11)

Finally, the longitudinal thermal expansion coefficent of the cracked sample is

αL = α0
L − C − C0

C0

∆α
C1ET

(12)

where α0
L is the longitudinal thermal expansion coefficient of the uncracked sample.

FRACTURE AND FATIGUE ANALYSIS
As suggested in Ref. [17] and other references [4,6,7,15,16], we assume that matrix microcracking is

best modeled using an energy approach. By the energy approach to static testing, the next microcrack
will form when the energy released on forming that crack reaches the critical energy release rate, Gmc,
or the microcracking fracture toughness of the material system. To use the energy approach, we need
an expression for the energy release rate — Gm. Consider the formation of a crack in the kth crack
interval as illustrated in Fig. 1B. The energy release rate associated with the formation of this crack
can be found by differentiating Eq. (11) [22]:

Gm = −∂U
∂A

∣∣∣∣
const. u

=
B2W 2E2

c

2E2
T

(
ET

Ec
σ0 −

∆αT
C1

)2
dC

dA
(13)

In deriving Eq. (13), we needed to evaluate ∂σ0
∂A

∣∣
const. u

. Using the relation for sample compliance times
load of

CP = u(P ) − u(0) = u(P ) − αLLT (14)

where u(P ) is sample displacement under load P , and differentiating results in

∂σ0

∂A

∣∣∣∣
const. u

=
(
Ec∆αT
ETC1

− σ0

)
1
C

dC

dA
(15)

Eq. (15) corrects an error in Ref. [17] (cf. Eq. (44) in Ref. [17]) and accounts for the difference between
Eq. (13) the corresponding equation in Ref. [17].

Evaluating dC
dA by differentiating Eq. (9) results in the final energy release rate expression:

Gm =
(
ET

Ec
σ0 −

∆αT
C1

)2

C3t1Y (D) (16)
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where Y (D) is a calibration function that depends on the crack density, D = N
L , or more formally on

the complete distribution of crack spacings:

Y (D) = LW
d

dA

∑N
i=1 χ(ρi)∑N

i=1 ρi

=
d

dD

(
D〈χ(ρ)〉

)
(17)

where 〈χ(ρ)〉 is the average value of χ(ρ) over the N crack spacings.
To use Eq. (16), we must evaluate Y (D). For the fracture process illustrated in Fig. 1 where a

new crack forms at ξ = 2δ − ρk in the kth crack interval characterized by ρk, we can evaluate Y (D)
by a discrete differentiation. Before the crack forms

〈χ(ρ)〉 =
1
N

N∑
i=1

χ(ρi) and D =
N

L
.

After the crack forms

〈χ(ρ)〉 =
1

N + 1

[(
N∑

i=1

χ(ρi)

)
− χ(ρk) + χ(ρk − δ) + χ(δ)

]
and D =

N + 1
L

.

The calibration function is therefore

Y (D) =
∆

(
D〈χ(ρ)〉

)
∆D

= χ(ρk − δ) + χ(δ) − χ(ρk) (18)

During a typical experiment we will not know where the next microcrack will form. We do know,
however, that cross-ply laminates tend to form regularly spaced microcracks. With regular spacings
between the microcracks, the next microcrack will tend to form in a crack interval whose spacing is
equal to the average crack spacing; in other words ρk = 1/2t1D. Furthermore, the tendency towards
regular crack spacing indicates that the cracks tends to form in the middle of existing crack intervals
and therefore δ = ρ/2. With these two approximations

Y (D) = 2χ(ρ/2) − χ(ρ) = 2χ
(

1
4t1D

)
− χ

(
1

2t1D

)
(19)

Eq. (16) along with the Y (D) in Eq. (19) has been used to analyze data for the formation
of microcracks during static testing [17,20]. The results are excellent. With a single microcracking
fracture toughness, Gmc, for a given material system, it is possible to predict the microcrack density
as a function of applied stress. More importantly, the same value of Gmc can be used to predict the very
different results that are obtained from a variety of cross-ply laminates of generic structure [0m/90n]s.
More details on these experiments are given in Ref. [20].

In this paper, we describe some preliminary results of appplying Eq. (16) to the analysis of fatigue
experiments. We propose to analyze fatigue data using a modified Paris-law [23] approach in which
the rate of change in microcrack density is given by

dD

dN
= A∆Gn

m (20)

where A and n are two power-law fitting parameters. The conventional Paris-law approach relates
the rate of change in crack length to the range in the applied stress intensity factor — ∆K. In the
microcracking fracture experiment, the stress intensity factor approach is not possible and we have
therefore substituted ∆G for ∆K.
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Figure 2: Microcracking fatigue data for a [02/904]s Fiberite 934/T300 composite. The

solid line shows ∆G as a function of crack density. The symbols show the crack density

as a function of cycle number. The straight line through the crack density data shows

the Paris-law region of constant crack density growth rate.

RESULTS AND DISCUSSION
Our microcracking fatigue experiments were done under constant amplitude load conditions. With

a given ∆σ0 at a given crack density, it is a simple matter to calculate ∆G using Eq. (16). If Eq. (20) is
valid, plotting dD

dN as a function of ∆G on a log-log plot should yield a linear relation. The problem with
most fatigue crack propagation experiments is that during the experiment, both the dependent variable
(crack length) and the independent variable (∆K) change. A fortunate feature of microcracking fatigue
experiments, however, is that the dependent variable (∆G) remains constant up to reasonably high
crack densities. Figure 2 plots ∆G as a function of crack density for a typical fatigue experiment on a
[02/904]2 Fiberite 934/T300 composite. ∆G is constant up to a crack density of about 0.20–0.25 mm−1

and then drops rapidly to a low value.
Because ∆G is constant over a fairly wide range, we can do relatively simple fatigue microcrack

propagation experiments. We measure the crack density as a function of cycle number for various values
of ∆σ0. Up to values of the crack density of about 0.20–0.25 mm−1, ∆G is constant and we expect by
Eq. (20) that the crack density will increase linearly with cycle number. Typical experimental results
are given in Fig. 2. For this sample there is a region of linear density increase between crack densities of
0.13 mm−1 and 0.23 mm−1. In agreement with Paris-law behavior, the crack density stops increasing
after it reaches 0.25 mm−1 which corresponds to the density at which ∆G begins its rapid decline.

Contrary to Paris-law behavior, however, there is a rapid increase in crack density up to 0.13 mm−1

that occurs before the linear Paris-law growth region. We suggest that these cracks are a result of
inherent flaws in the laminate. Similar observations were made during static experiments in which
some cracks typically form at loads well below the loads predicted by the fracture toughness of the
material system [20]. In those experiments, the early cracks were observed using microscopy and were
normally found to be located near obvious flaws. With the above comments, we divide the crack density
vs. cycle number data into three regions:

1. Flaw Dominated Region: The first few microcracks form during the first few cycles and form
at flaws. The formation of these microcracks are controlled by laminate quality. The energy release
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Figure 3: The crack density growth rate (in cracks per mm per cycle) as a function of

applied ∆G for AvimidR© K Polymer/IM6 laminates. As indicated on the figure, the

results are from three different cross-ply layups.

rate in Eq. (16) does not account for macroscopic flaws and therefore can not be used to predict
the behavior in this region.

2. Constant Growth Region: After the inherent flaws are used up, the crack density increases
according to the Paris law in Eq. (20). Up to a crack density of about 0.25 mm−1 (depending on
laminate properties and the thicknesses of the 0◦ and 90◦ plies), ∆G remains relatively constant
and therefore the crack density increases at a constant rate. The crack formation in this region is
controlled by the inherent toughness of the material system.

3. Slow Growth Region: At high crack densities, ∆G decreases. According to the Paris-law in
Eq. (20), this decrease will cause a dramatic reduction in the crack formation rate.

To map out the resistance of a composite material system to fatigue induced microcracking involves
measuring the crack density growth rate as a function of applied ∆G. These experiments are most
conveniently done in the constant growth region. In brief, we subject various cross-ply laminates to
various levels of ∆σ0 and measure the crack density as a function of cycle number. Before starting the
experiment, we can use Eq. (16) to calculate the crack density at which ∆G begins to decrease. We
run our experiments up to this crack density and look for the constant crack growth region. We always
observe a constant crack growth region and the slope in this region gives the crack density growth
rate. Finally, we plot this growth rate vs. ∆G to obtain a fatigue resistance plot.

The first microcrack fatigue resistance experiments were done on AvimidR© K Polymer/IM6 lam-
inates and the results are in Fig. 3. We note four things about the results:

1. Over a fairly wide range in ∆G the log-log plot is linear indicating that Eq. (20) holds. The
power-law exponent in the linear region is n = 5.47.

2. At very high ∆G the microcracks propagate very fast. This upper limit occurs at a ∆G ≈
1000 J/m2 which is very near to the static microcracking fracture toughness of these laminates
which has been measured to be 920 J/m2 [20].

3. The lowest ∆G data point falls below the Paris-law line. This may be an indication of a threshold
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Figure 4: The crack density growth rate (in cracks per mm per cycle) as a function of

applied ∆G for Fiberite 934/T300 laminates. As indicated on the figure, the results

are from four different cross-ply layups.

limit to fatigue induced microcracking occurring at about 400 J/m2.

4. Perhaps most important, as indicated in Fig. 3, we note that the data came from three different
layups — [02/904]s, [0/902]s,and [0/903]s laminates. Although the raw data differ from laminate
to laminate, we have been able to reduce all experimental results to a single master Paris-law plot
by normalizing to the applied energy release rate as calculated by Eq. (16). As has been observed
during conventional fatigue crack propagation experiments [24], the master Paris-law plot has a
linear region that corresponds to the power law in Eq. (20), and has indications of a thresold
limit at low ∆G and of fast fracture at high ∆G. This result supports an energy based fracture
mechanics view of composite microcracking. In principal, this master Paris-law plot could be used
to predict the propagation of microcracks in a variety of AvimidR© K Polymer/IM6 laminates.

A second set of experiments was run on Fiberite 934/T300 laminates; the results are given in Fig. 4.
We again note a linear Paris-law region with a power-law exponent of n = 2.34. The linear region is
much shorter for Fiberite 934/T300 laminates than it was for the AvimidR© K Polymer/IM6 laminates.
At high ∆G (about 650 J/m2) we see rapid propagation of microcracking. This high ∆G is close the
static microcracking fracture toughness of these laminates which has been measured to be 690 J/m2

[20]. The two lowest ∆G points suggest a threshold limit for microcracking of about 250 J/m2. Finally,
as indicated in Fig. 4, the data came from four different layups — [02/904]s, [02/902]s, [0/902]s, and
[0/904]s laminates. The fact that all this data falls on a single Paris-law plot supports our hypothesis
that Eq. (16) gives a useful fracture mechancics interpretation of composite microcracking.
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