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ABSTRACT

The energy release rate for propagation of a debond in either a single-fiber
pull-out test or a microbond test was derived analytically. The key finding was
that an accurate analysis can be derived by a global energy analysis that includes
effects of residual stresses and interfacial friction but does not need to include
the details of the stress state at the interfacial crack tip. The analytical results
were verified by comparison to finite element analyses. The energy release rate
expressions were used to determine interfacial fracture toughness from single-
fiber pull-out tests or microbond tests. The experiments included both macro-
sized model microbond specimens (steel wire/epoxy) and micro-sized pull-out
and microbond specimens (glass fiber/epoxy or vinyl ester). In all experiments,
it was critical to correctly account for the true level of residual stresses in the
specimen; it some experiments, the inclusion of friction was also critical. For
experiments involving physical aging conditions, it was essential to additionally
account for partial relaxation of internal stresses.

INTRODUCTION

Two popular interface characterization tests are the microbond test [1] and
the single-fiber pull-out test [2]. In the microbond test, a small droplet of matrix
is deposited on a fiber and sheared off by restraining the droplet while the fiber
is pulled. In the single-fiber pull-out test, the end of a fiber is embedded in a
larger amount of matrix and pulled out while the matrix is held (see Fig. 1). In
both experiments, the peak force, P , required to debond the fiber is recorded as
a function of droplet length (microbond test) or embedded fiber length (pull-out
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Figure 1. The left side shows the microbond (top) and pull-out (bottom) specimen geometries.
The right side shows the equivalent concentric cylinder model where the embedded length of
fiber is in a cylinder of matrix. The fiber in both specimens is loaded with stress σd. The
“dotted” arrows are the remaining microbond specimen boundary conditions; the solid arrows
on the bottom of the specimen are the remaining pull-out specimen boundary conditions.

test). A common interpretation of such experiments is to calculate an interfacial
shear strength from

τISS =
P

2πrf le
(1)

where rf is the fiber radius and le is the embedded fiber length. Physically this
term is the average interfacial shear stress at the time of failure. It might be
useful for qualitative work, but it has several limitations when one desires more
rigorous interfacial characterization.

One approach to deriving more fundamental results about interfacial prop-
erties is to characterize interfacial failure using fracture mechanics [3–8]. In
a fracture mechanics approach, both the microbond and pull-out tests can be
viewed as tests that initiate and propagate a crack, in the form of an interfacial
debond, along the fiber/matrix interface. To apply fracture mechanics methods,
one needs to record the load required for crack growth as a function of current
crack length and other relevant specimen geometry variables. The experimental
observations need to be reduced to fracture mechanics parameters by calculat-
ing the energy release rate for crack growth. This paper summarizes a new
analytical result for the energy release rate due to interfacial debond growth
in either the microbond or the pull-out test. We have used the new fracture



mechanics methods to interpret microbond and pull-out test results in terms of
an interfacial fracture toughness. The analysis methods account for both the
effects of residual stresses and interfacial friction. It was found that both effects
are important and must be included before valid fracture mechanics results can
be derived from interfacial tests.

THEORY

Figure 1 shows a reduction of both a real microbond specimen and a real
pull-out specimen to an idealized geometry using concentric cylinders [4, 5, 6].
For the pull-out test, there are three simplifications. First, the restraint on
the bottom of the matrix is replaced by a uniform traction that balances the
traction applied to the top of the fiber. Second, the matrix region surrounding
the embedded fiber is replaced by an equivalent cylinder of matrix whose radius
is chosen to preserve the total amount of matrix material within the zone of the
embedded fiber. Third, because the free fiber length, before the fiber enters the
matrix, and the free matrix zone, below the bottom of the embedded fiber, are
under constant-traction, they release no energy as the debond propagates [6].
The energy release rate analysis can thus focus on the concentric cylinder model
on the right of Fig. 1. The length of the concentric cylinders is equal to the
embedded fiber length, le. By equating the volume of the specimen above the
bottom of the embedded fiber (the zone above the dotted line in the pull-out
specimen in Fig. 1) to the volume of the equivalent cylinder, the effective matrix
outer radius can be calculated from [6]:

rm =

√√√√le
(
R− le

3

)
(2)

where R is the radius of the typically hemispherical pull-out specimen droplet.
The effective fiber volume fraction is vf = r2

f/r
2
m. The boundary conditions

for the pull-out test are shown by the solid arrows. The fiber is pulled with a
stress of σd. By force balance, the total stress on the bottom of the specimen is
σ0 = vfσd. The stress σe shown on the bottom of the fiber is the actual internal
stress on the end of the embedded fiber.

For the microbond specimen, there are two simplifications. First, the elliptical
matrix droplet is replaced by a matrix cylinder with length equal to the embed-
ded fiber length and matrix radius chosen to preserve the total fiber volume
fraction within the matrix. An important experimental observation in micro-
sized microbond specimens is that the effective fiber volume fraction changes
as the droplet length increases; this effect needs to be included in any fracture
mechanics analysis of microbond results [7]. Second, the constant displacement
boundary conditions in real specimens, in which the matrix is restrained while
the fiber is pulled, are replaced by constant traction boundary conditions that
balance the stress applied to the fiber. The microbond specimen boundary con-
ditions thus include the fiber stress of σd at the top of the specimen; that stress



is balanced by a matrix stress (shown with dotted lines in Fig. 1) of −σdvf/vm.
The bottom of a microbond specimen is stress free (σe = σ0 = 0).

Using the general composite fracture mechanics methods from Ref. [8] and
applying them to the geometry in Fig. 1 with an interfacial debond of length a,
the energy release rate for debond growth in both the pull-out and microbond
specimens can be written as [6]:

G(a) =
rf
2

{
C33sσ̄

2 + 2D3sσ̄∆T +

(
D2

3

C33

+
vm(αT − αm)2

vfA0

)
∆T 2

−
[
σ0

2

(
1

EA
− 1

Em

)
+D3s∆T

]
×[

2τf
rf

CT (a)−
(
σ̄ +

(1 +m)D3∆T

C33

)
C ′T (a)

]}
(3)

where m = 0 is used for a pull-out test and m = 1 is used for a microbond
stress. The term σ̄ is a reduced debonding stress defined by

σ̄ = σd −
2τfa

rf
− σ0EA
vfEA + vmEm

(4)

Other terms in Eq. (3) are fiber radius, volume fraction, transverse thermal
expansion coefficient, and axial modulus (rf , vf , αT , and EA), matrix volume
fraction, thermal expansion coefficient, and modulus (vm, αm, and Em), a tem-
perature difference which defines the level of residual stresses (∆T ), a friction
stress on the debond (τf ), a stress-transfer function (CT (a)), and several con-
stants which depend only on the fiber and matrix properties and the geometry
of the concentric cylinders (C33s, D3s, A0, D3, and C33 which are defined in
Ref. [6]). As explained elsewhere [6], Eq. (3) is essentially an exact result for
debonding energy release rate in the concentric cylinders model including both
the effects of residual thermal stresses and friction. Residual stresses are included
by selecting ∆T to match the true level of residual stresses in the specimen. Be-
cause rigorous modeling of Coulomb friction is difficult, friction is included in
an approximate manner. It is included by introducing a constant shear stress
on the debond surface of τf . This frictional stress contributes to energy release
rate by external work on the debond surfaces as the fiber and matrix slide by
each other. In some experiments it is possible to measure τf [5] and thus we
claim this approach can accurately include friction effects.

Although Eq. (3) can be demonstrated to be accurate, it is written in terms
of the solution to an elasticity problem. The cumulative stress transfer function
CT (a) is define by:

CT (a) =
∫ le−a

0
F (z) dz (5)

where the function F (z) is the solution to an underlying stress-transfer problem;
it is the average axial fiber stress in concentric cylinders of length le−a subjected
to unit normal stress on the fiber and a balancing −vf/vm stress on the matrix,
both at z = 0 in addition to zero stress on the other end at z = le − a. The



function F (z) and therefore CT (a) can be found by any analytical, numerical, or
even experimental means and then substituted into Eq. (3) to find energy release
rate. One simple analytical approach is to use shear lag analysis for which it is
easy to derive [5]:

CT (a) =
1

β
[coth β(le − a)− cschβ(le − a)] (6)

C ′T (a) = −1

2
sech2

(
β(le − a)

2

)
(7)

where β is the shear-lag parameter most accurately defined by [9, 10, 11]

β2 =
2

r2
fEAEm

 EAvf + Emvm
vm

4GA
+ 1

2Gm

(
1
vm ln 1

vf − 1− vf
2

)
 (8)

and GA and Gm are the axial shear modulus of the fiber and shear modulus of
the matrix.

Two interesting limits of Eq. (3) are when the embedded fiber length is long
and when the interface is frictionless. For long embedded fibers, the function
F (z) will decay from F (z) = 1 at z = 0 to F (z) = 0 long before the end
of the bonded interface zone at z = le − a. Clearly, this limit implies CT (a)
is a constant which further implies that C ′T (a) = 0. Writing the constant as
CT (a) = 1/β (which is also the long-fiber limit of the shear-lag solution), the
long-fiber limiting result is

G∞(a) =
rf
2

{
C33sσ̄

2 + 2D3sσ̄∆T +
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+
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]}
(9)

The frictionless limit for any fiber length or for long fiber lengths can easily
be found by setting τf = 0 in Eq. (3) or Eq. (9), respectively. Note that for
the combination of frictionless interfaces and long fibers that all terms involving
CT (a) and C ′T (a) drop out. In other words, for this special case, energy release
rate can be determined without the need for any stress analysis to find CT (a).

EXPERIMENTAL RESULTS

Comparison to Finite Element Analysis

The accuracy of the analytical equation for energy release rate can be checked
by comparison to finite element results, as shown in Fig. 2. This compari-
son was for glass fibers embedded in a polymer matrix. The fiber radius was
rf = 10.5 µm, had an embedded length of 420 µm, and specimen volume frac-
tion of vf = 1%. The specimen was loaded with σd = 400 MPa, thermal load
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Figure 2. A sample calculation of G(a) for a single-fiber pull out test. The “equation” results
are from Eq. (3); the “long-fiber limit” results are from Eq. (9); the dashed line is the result
of finite element calculations.

∆T = −100◦C, and interfacial friction of τf = 1 MPa. The finite element anal-
ysis used axisymmetric, 8-noded, isoparametric elements. The energy release
rate as a function of debond length was found by a modified crack closure tech-
nique [12]. The analytical results are for both the full analysis in Eq. (3) and
for the long-fiber limit in Eq. (9). The full analysis and the finite element anal-
ysis agree extremely well provided the debond length is neither too long nor
too short. Some approximations used here relied on the debond tip not being
too close to either end. The results in Fig. 2 show that when that condition
holds the analytical result is very accurate. When the debond tip is near ei-
ther end, the finite element analysis and the analytical result disagree. It is not
certain, however, that the finite element results should be viewed as correct in
these extremes. The finite element analysis has its own set of problems when
the debond tip gets too close to boundaries. The analytical solution, which is
smoother, may even provide a better representation of the energy release rate
as a function of debond length than the finite element analysis. This issue could
be resolved by more refined finite element analysis. The long-fiber limit agrees
well with the full analysis and with finite element analysis only for the shorter
debond lengths. As the debond length increases, the term le−a gets smaller and
the long-fiber limit becomes increasingly less accurate. It can be shown that the
long-fiber limit requires le − a to be about an order of magnitude larger than
1/β [6]. In this example 1/β was 28.3 µm.
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Figure 3. Crack-resistance curves for a steel/epoxy model specimen analyzed four different
ways. Curve a ignores residual stresses and friction; curve b includes residual stresses but
ignores friction; curve c includes both residual stresses and friction; curve d ignores residual
stresses, but includes friction.

Model Experiments

For verification of the use of Eq. (3) for analysis of debonding experiments,
we did model experiments for steel wire embedded in epoxy cylinders [5]. There
were three advantages to these model specimens. First, the specimen geometry
could be fabricated to closely match the concentric cylinder geometry used in
the analysis. Second, it was possible to observe stable debond propagation and
thus from a single specimen we were able to record many results for failure
load as a function of crack length. Third, after complete debonding the epoxy
cylinder slid along the fiber restrained only by friction. We were able to record
the friction stress and use that result for the friction term in the energy release
rate analysis. In brief, epoxy cylinders were molded around steel wires. The
model microbond experiment was to thread the wire through a hole in a steel
plate and pull on the wire while the plate restrained the epoxy cylinder. By
using back lighting, we could monitor crack growth and record fiber stress, σd,
as a function of debond length, a. All experimental results were then substituted
into Eq. (3) to calculate G(a) or the interfacial fracture toughness. If a fracture
mechanics analysis of these experiments is valid, the toughness should be a
material property that is independent of the debond length.

Figure 3 give the results of analyzing model experiments by various combi-



nations of including or not including thermal stresses and/or friction. Curve a
is an analysis that ignores both residual stresses and interfacial friction. This
curve is clearly a poor fracture mechanics result; it is never constant. Curve b
includes residual thermal stresses by setting ∆T = −95◦C (which is close to the
temperature difference between the post-cure temperature and the testing tem-
perature), but still ignores friction. Again, curve b, is a poor fracture mechanics
result. Curves c and d (filled symbols in Fig. 3) both include friction effects by
setting τf = 4.2 MPa which was the measured interfacial shear stress after com-
plete debonding. Curve c is an analysis that included both residual stresses and
friction. This curve is a good fracture mechanics result. There is evidence for an
initial rise in toughness at short debond lengths, but the R-curve soon levels out
at an approximately constant value of about 360 J/m2. This value for toughness
is a reasonable result for a steel/epoxy interface. Curve d includes interfacial
friction, but ignores residual stresses. Although curve d looks relatively flat on
the scale of Fig. 3, it actually never levels off and is a poor fracture mechanics
result. The difference between curves c and d illustrates the magnitude of the
contribution of residual stress to debonding. The magnitude is large; in fact,
most of the energy released comes from residual stresses.

The model experiments show that Eq. (3) can be used to analyze microbond
experiments using fracture mechanics. The results also show the importance of
including both friction and residual stresses in that analysis. Without friction,
the energy release rate is not constant. In other words, the work of frictional
sliding needs to be subtracted before one can get a true result for interfacial
toughness. Once friction is correctly included, most of the remaining energy
released comes from the release of residual stresses. In other words, residual
stresses play an important role in interfacial failure of microbond specimens. For
microbond specimens to be useful for determining interfacial failure properties,
it is essential that the analysis method account for residual stresses. This point
is illustrated further in the next example.

Physical Aging

We also did experiments on micro-sized, glass-fiber/epoxy microbond speci-
mens and interpreted the results using fracture mechanics [13]. There are two
new difficulties in micro specimens vs. model specimens. First, the droplets
assume a natural elliptical shape and can not be molded into cylinders. We
analyzed experiments with elliptical droplets by setting the radius of the equiv-
alent matrix cylinder to give the same volume of matrix as in the real specimen.
The volume of the matrix in the real specimens can be found from the length
and diameter of the elliptical droplet. from such measurements, it has been
observed that fiber volume fraction within the droplet varies with embedded
fiber length [7]. Many older microbond experiments recorded results only as a
function of fiber length and did not report droplet diameter. Because it is not
possible to deduce the changes in fiber volume fraction in such results, these
older results an not amenable to reinterpretation by fracture mechanics.
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Figure 4. Fracture toughness calculated from microbond specimens as a function of droplet
length. Curves a include residual stresses but do not account for relaxation of those stresses
during processing or aging. Curves b account for relaxation of residual stresses.

The second difficulty with real microbond specimens is observation of crack
length — it is difficult or impossible to observe crack growth. From our energy
release rate analysis in the presence of friction, however, the prediction is that
the interfacial debond should grow stably as the load increases to the peak load.
As a consequence, the peak load, which is typically measured, corresponds to
a droplet of length le in which a ≈ le or in which the crack is near the point
of complete debonding [5]. This prediction agrees with the results from model
experiments. In a previous paper [5], we suggested that interfacial toughness in
microbond experiments that lack crack observations can be calculated by using
the peak load, assuming a = le, and calculating G(a) from the long-fiber limit in
Eq. (9) or from G∞(le). The long-fiber limit is used instead of the actual limit
because Eq. (3) becomes less accurate for a ≈ 0 or a ≈ le. In contrast, Eq. (9)
is well behaved and was shown in model experiments to give good results for
toughness when a ≈ le.

In brief, we did a series of experiment for glass fibers embedded in a low
Tg epoxy matrix. For each specimen, we recorded the embedded fiber length,
matrix droplet diameter, the peak load at debonding, and the frictional load
after debonding. Some specimens were tested immediately after fabrication (the
“unaged” specimens). Other specimens were aged for 3 days at 37◦C (which was
Tg − 5.1◦C) before testing [13]. The experimental results were substituted into
Eq. (9) using a = le to find toughness and are plotted as a function of droplet
length in Fig. 4. Good fracture mechanics results should show a toughness that



is independent of droplet length and differences between unaged and aged results
should show the affect of physical aging on the interfacial fracture toughness.

The one parameter not directly measurable by experimental observations was
∆T which determines the level of residual stresses. The model experiments
demonstrated the importance of including residual stresses in analysis of mi-
crobond tests. Their correct inclusion was similarly vital to a valid fracture
mechanics interpretation of micro-sized specimens. The curves labeled “a” in
Fig. 4 were calculated by a simple thermoelastic analysis for residual stresses
that basically takes ∆T close to test temperature minus the Tg of the matrix [13].
Because of the low Tg of this epoxy, however, there is a possibility of stress re-
laxing while cooling. Furthermore, the aging conditions will allow further stress
relaxation. From viscoelastic modeling of the thermal history of all samples,
we calculated a more realistic ∆T that accounts for all stress relaxation and
used that result to calculate interfacial toughness [13]. The results are in the
curves labeled “b”. These results provide an interfacial fracture toughness of
264± 15 J/m2 that is both independent of droplet length (as expected in frac-
ture mechanics) and independent of aging time. In other words, aging relaxes
internal stresses, but it has no effect on interfacial fracture toughness. Any at-
tempt to study aging effects with analysis methods that do not correctly account
for residual stresses will likely lead to erroneous conclusions about the effect of
aging on interfacial properties.

Pull Out

We also used fracture mechanics to analyze pull-out tests for glass fibers
of various diameters embedded in a vinyl ester matrix [14]. In the pull-out
apparatus, we were able to observe an initial kink in the load-displacement
curve. This kink was taken to be the point of initiation of debonding. For each
specimen, we thus recorded embedded fiber length, droplet radius (R in Fig. 1),
and the fiber stress at debond initiation. These results were substituted into
Eq. (3) using a = 0 and calculating ∆T from the curing conditions. Friction
was ignored in these experiments because we only considered initiation. The
effect of friction only becomes significant as the debond length gets long. The
calculated interfacial toughness for three fibers of different diameters are plotted
in Fig. 5 as a function of embedded fiber length. After an initial rise, the
results for all three fibers became roughly constant at 15 ± 3 J/m2. In other
words, as expected for good fracture mechanics results, the interfacial toughness
was independent of both fiber length and fiber diameter. Additional fracture
mechanics analyses for different matrices and different fiber/matrix interfacial
conditions are given in Ref. [14]. The results always gave toughnesses that
were independent of embedded fiber length, but were not always independent of
fiber diameter. Reference [14] proposed an alternate analysis method based on
peak shear stress at the point of initiation. Provided the shear stresses analysis
included effects of non-uniform shear stress and residual stresses, it gave good
results for all experiments.



0 50 100 150 200 250 300

6

8

10

12

14

16

18

Embedded Fiber Length (µm)

In
te

rf
ac

ia
l T

ou
gh

ne
ss

 (
J/

m
2 )

Fiber Diameter
11 µm
50-60 µm
85-90 µm

Figure 5. Fracture toughness calculated from initiation of debonding in pull-out tests for
glass fibers of three different diameters in a vinyl-ester matrix as a function of embedded fiber
length.

CONCLUSIONS

Equation (3) provides an accurate, analytical result that can be used to cal-
culate the energy release rate for interfacial crack growth in both the microbond
and the single-fiber pull-out test geometries. The experiments presented in this
paper show that this equation can be used to derive fracture toughness informa-
tion from these common interfacial test methods. The calculation of interfacial
toughness, however, requires sufficient experimental input for determination of
all terms in Eq. (3). The key results needed are specimen geometry, current
interfacial crack length, the load required to extend the crack, the actual level
of residual stresses, and the magnitude of any friction on the debond surfaces.
Residual stresses are particularly important for analysis of microbond specimens
because they account for much of the energy released. We would not have been
able to interpret the effects of physical aging if our analysis did not correctly
account for all residual stresses and for relaxation of residual stresses during
processing or aging. Similarly, friction is important, especially as the debond
gets long. Without proper inclusion of friction effects, it would not be possi-
ble to find a meaningful interfacial fracture toughness that is independent of
crack length. In some micro-sized specimens it can be difficult to observe crack
growth. This situation can sometimes be handled by using other means to de-
duce crack length. For example, we deduced that the crack length at the peak
load in microbond tests is nearly equal to the droplet length. For pull-out tests,



we were able to observe debond initiation as a kink in the force-displacement
curve and thus the “kink” load corresponds to zero initial crack length.
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