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Abstract

Empirical models are important tools for relating field-measured biophysical variables to remote sensing data. Regression analysis has

been a popular empirical method of linking these two types of data to provide continuous estimates for variables such as biomass, percent

woody canopy cover, and leaf area index (LAI). Traditional methods of regression are not sufficient when resulting biophysical surfaces

derived from remote sensing are subsequently used to drive ecosystem process models. Most regression analyses in remote sensing rely on a

single spectral vegetation index (SVI) based on red and near-infrared reflectance from a single date of imagery. There are compelling reasons

for utilizing greater spectral dimensionality, and for including SVIs from multiple dates in a regression analysis. Moreover, when including

multiple SVIs and/or dates, it is useful to integrate these into a single index for regression modeling. Selection of an appropriate regression

model, use of multiple SVIs from multiple dates of imagery as predictor variables, and employment of canonical correlation analysis (CCA)

to integrate these multiple indices into a single index represent a significant strategic improvement over existing uses of regression analysis in

remote sensing.

To demonstrate this improved strategy, we compared three different types of regression models to predict LAI for an agro-ecosystem and

live tree canopy cover for a needleleaf evergreen boreal forest: traditional ( Y on X) ordinary least squares (OLS) regression, inverse (X on Y)

OLS regression, and an orthogonal regression method called reduced major axis (RMA). Each model incorporated multiple SVIs from

multiple dates and CCA was used to integrate these. For a given dataset, the three regression-modeling approaches produced identical

coefficients of determination and intercepts, but different slopes, giving rise to divergent predictive characteristics. The traditional approach

yielded the lowest root mean square error (RMSE), but the variance in the predictions was lower than the variance in the observed dataset.

The inverse method had the highest RMSE and the variance was inflated relative to the variance of the observed dataset. RMA provided an

intermediate set of predictions in terms of the RMSE, and the variance in the observations was preserved in the predictions. These results are

predictable from regression theory, but that theory has been essentially ignored within the discipline of remote sensing.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Biogeochemical cycling models are increasingly run in a

spatially explicit mode, requiring as model drivers moderate

to high spatial resolution surfaces of land cover and leaf area

index (LAI) derived from satellite imagery (Bonan, 1993;

Reich, Turner, & Bolstad, 1999; Running, Baldocchi, Turner,

Gower, Bakwin, & Hibbard, 1999). Mapping of continuous

variables like LAI from high-resolution imagery such as

Landsat TM or ETM+ has largely depended on modeling

empirical relationships derived from single-date spectral

vegetation indices (SVIs). The most important of these are

the normalized difference vegetation index (NDVI) and its

counterpart, the simple ratio (SR) (Chen & Cihlar, 1996;

Fassnacht, Gower, MacKenzie, Nordheim, & Lillesand,

1997; White, Running, Nemani, Keane, & Ryan, 1997).

These and other ratio-based indices, although important,

utilize only a fraction of the spectral information available

in many image datasets (Cohen, Spies, & Fiorella, 1995).

Moreover, with the cost of ETM+ data substantially reduced

from that of its predecessor, TM, there are increasing oppor-

tunities to utilize multiple dates of imagery in these analyses.

0034-4257/02/$ - see front matter D 2002 Elsevier Science Inc. All rights reserved.

PII: S0034 -4257 (02 )00173 -6

* Corresponding author. Tel.: +1-541-750-7322; fax: +1-541-758-

7760.

E-mail address: warren.cohen@orst.edu (W.B. Cohen).

www.elsevier.com/locate/rse

Remote Sensing of Environment 84 (2003) 561–571



Traditional methods for empirical modeling of continu-

ous variables, such as LAI, from SVIs rely on ordinary least

squares (OLS) regression (Steel & Torrie, 1980), a techni-

que that has important limitations for such applications

(Curran & Hay, 1986). In particular, a violation of assump-

tions about measurement error can have undesirable effects

on OLS estimates of the biophysical variable. In spite of the

cogent arguments against the use of OLS regression in

remote sensing offered by Curran and Hay (1986), we could

find only one subsequent remote sensing paper that heeded

their advice (Larsson, 1993). Alternative regression models

may provide improved estimates of biophysical variables in

remote sensing. Several such models are discussed in the

literature, but almost all of that literature is outside of our

discipline.

When conducting regression analyses that utilize multi-

ple SVIs and multi-date data, it would be useful to construct

a single, integrated index to represent the multiple predictor

variables. This would facilitate visual assessment of model

strength and whether the integrated relationship is linear. An

integrated index could also help in subsequent analyses, or

for screen viewing and interpretation (similar to the NDVI

or SR). Additionally, an integrated index would be useful

for comparisons among possible model formulations. Most

important, however, is that certain regression procedures are

best conducted in a simple linear context, and thus rely on a

single predictor variable. These needs can be met using a

statistical tool known as canonical correlation analysis

(CCA).

1.1. Objective

The goal of this paper is to demonstrate an improved

strategy for regression modeling of biophysical variables in

remote sensing. That strategy includes use of multiple SVIs

from multiple dates of ETM+ imagery, development of a

CCA-based index that integrates these, and choice of an

appropriate type of regression model. We test three regres-

sion-modeling approaches: traditional OLS (RegT), inverse

OLS (RegI), and reduced major axis (RMA). The test is

done for two biophysical variables, one in each of two

different biomes, to highlight the general applicability of the

analyses and results. At an agricultural site, we model LAI

for two separate dates; at a boreal forest site, live tree cover

is modeled. The objective is to compare and contrast the

three regression approaches in terms of basic statistical

characteristics of the predicted variables relative to the

statistical characteristics of the observed variables. Numer-

ous examples of such comparisons exist in the general

literature, and the lessons learned are applied in various

disciplines. However, the two papers in remote sensing

literature that address this issue (Curran & Hay, 1986;

Larsson, 1993) have been essentially ignored. With contin-

ued use of regression in remote sensing, and an increased

reliance on Landsat imagery to drive ecosystem process

models with regression-derived surfaces, it is imperative

that we consider the weaknesses of our common methods

and the potential strengths of alternative methods.

1.2. Background

1.2.1. Spectral vegetation indices (SVIs) and related linear

combinations

The value of SVIs for modeling the relationship between

vegetation variables and reflectance data is well established.

In particular, since their inception, the SR (Birth & McVey,

1968) and the NDVI (Rouse, Haas, Schell, & Deering,

1974) have dominated the remote sensing and related

literature (e.g., Chen & Cihlar, 1996; Huete, Jackson, &

Post, 1985; Sellers, 1987; Tucker, 1979; Turner, Cohen,

Kennedy, Fassnacht, Briggs, 1999). Modifications to these

indices have been proposed to account for background

effects associated with incomplete canopy cover (Huete,

1988), some of which take advantage of shortwave-infrared

reflectance (Brown, Chen, Leblanc, & Cihlar, 2000; Nem-

ani, Pierce, Running, & Band, 1993).

Although these ‘‘ratio-based’’ indices have the advantage

of being simple to understand and apply, an alternative set

of indices, called ‘‘n-space indices’’ (Jackson, 1983), is

designed to more fully exploit the spectral domain of

reflectance data. Numerous such indices exist, including

the Perpendicular Vegetation Index (Richardson & Wie-

gand, 1977) and the widely used Tasseled Cap, which

consists of the brightness, greenness (Kauth & Thomas,

1976), and wetness (Crist & Cicone, 1984) indices. The

Tasseled Cap indices, in particular, provide standardized

coefficients for all spectral bands of Landsat MSS and TM

data. One study, across a forested scene containing bare

ground, brush, and broadleaf and needleleaf forests of

varying ages, demonstrated that brightness, greenness, and

wetness accounted for 85% of the total spectral variability

contained in a single date of TM reflectance data (Cohen et

al., 1995); this, in comparison to only 52% in the red and

near-infrared bands.

The temporal domain of spectral data can greatly en-

hance our ability to map vegetation (Helmer, Brown, &

Cohen, 2000; Lefsky, Cohen, & Spies, 2001; Loveland et

al., 2000; Oetter, Cohen, Berterretche, Maiersperger, &

Kennedy, 2001). Incorporating a temporal series of data

into SVIs directly, however, has been given minimal atten-

tion. Malila (1980) described the change magnitude and

angle calculations, which are indices of a sort, required for

change vector analysis (CVA). Whereas CVA was designed

for two spectral dimensions and two dates of imagery, it has

been crudely extended to three spectral dimensions (Virag &

Colwell, 1987), and the magnitude calculation has been

generalized to n-dimensions by Lambin and Strahler (1994).

The concept for generalizing CVA angles and magnitudes

for n spectral and/or temporal dimensions was described

by Cohen and Fiorella (1998), but they stopped short

of implementing the procedure. Collins and Woodcock

(1996) developed a two-date Tasseled Cap transformation
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for use in change detection, but an n-date transformation

was not attempted.

Principal components analysis (PCA) is an attractive

means of incorporating spectral data from numerous dates

into a small set of axes that contain most of the spectral

information contained in the full multispectral, multitempo-

ral dataset (Eastman & Fulk, 1993; Richards, 1984).

Although not vegetation indices per se, the value of PCA

for reducing the size of the spectral– temporal dataset is

great. However, there are two important problems using

PCA for spectral– temporal analyses. First, the resulting

axes are dataset-dependent. Although this means that it is

difficult to generalize the interpretation of PCA axes to other

datasets, this is not unique to PCA, as the same problem is

common to all correlation-based, empirical analyses. The

second and more meaningful problem is that the coefficients

for PCA axes are normally obtained without regard for the

axes’ relationships with the variable we are interested in

predicting (e.g., LAI).

1.2.2. Regression and related analysis

In the simple linear case, OLS regression analysis is an

empirical approach for modeling the relationship between

two observed variables, X and Y. The form of the OLS

regression model is

Y ¼ b0 þ b1X þ e; ð1Þ
where Y is the variable to be predicted, X is the variable Y is

predicted from, b0 is the intercept, b1 is the slope of the

relationship between X and Y, and e is error. Data for the

analysis are supplied by paired observations of the two

variables. Commonly, one variable is difficult or costly to

measure (e.g., vegetation attributes from field sampling),

and the other is relatively easy or inexpensive to observe

(e.g., SVIs from remote sensing). Although often the intent

of OLS regression is to determine the feasibility of estimat-

ing or predicting the expensive variable from observations

of the inexpensive one, sometimes the analysis is used

simply to determine the form and strength of the relation-

ship between the two variables. If the objective is the latter,

it is not particularly important which variable is X and which

is Y, and common in the remote sensing literature are both X

and Y representing the vegetation variable and the SVI

(Butera, 1986; Chen & Cihlar, 1996; Cohen, 1991; White

et al., 1997). If we are interested in actually using the

regression model to predict one variable from the other,

however, the distinction between X and Y becomes very

important. This is because of specifications and assumptions

associated with OLS regression.

One specification is that Y is the dependent variable and

X is the independent variable (Steel & Torrie, 1980).

Although it can be argued that spectral response is depend-

ent on vegetation state and not the other way around, much

of the remote sensing literature reports the vegetation

attribute being modeled as the dependent variable. Curran

and Hay (1986) discuss this as the ‘‘specification problem’’.

Specification in this manner is important because of an

assumption associated with OLS regression: that the inde-

pendent variable, X (e.g., an SVI), is measured without error

(Steel & Torrie, 1980). As the coefficients for the regression

equation are calculated by minimizing the sums of squares

of error in Y (e.g., LAI), illustrated graphically by Curran

and Hay (1986), the result is an attenuation (or compression)

of the variance of LAI predictions. In other words, values

above the mean of Y tend to be underpredicted and values

below the mean tend to be overpredicted (e.g., Cohen,

Maiersperger, Spies, & Oetter, 2001; Hudak, Lefsky, Cohen,

& Berterretche, 2002).

An alternative form of OLS regression is inverse

estimation (Brown, 1979), also known as inverse regres-

sion (Cohen, 1991) and calibration (Scheffé, 1973). Curran

and Hay (1986) refer to this as X on Y regression and

illustrate the concept graphically. With inverse estimation,

the specification problem is addressed in that the depend-

ent and independent variables are properly assigned, or

‘‘specified’’ (e.g., X is the vegetation variable and Y is the

SVI). In practice then, to predict the vegetation variable,

the coefficients for the OLS regression model are derived

using Eq. (1) and then the equation must be inverted to

solve for X, such that X=(Y� b0)/b1. The error term in Eq.

(1), e, is expressed as prediction residuals for each obser-

vation.

Although for remote sensing, inverse estimation elimi-

nates the specification problem, it does not address the more

important problem that X is assumed to be measured without

error. Curran and Hay (1986) provide an in-depth discussion

of sources of error for both X and Y in remote sensing. The

impact of measurement error in X when using inverse

estimation is known to be the opposite to that of its effect

using the Y on X form of OLS regression, i.e., amplification

of the variance of predicted biophysical values such that

values above the mean of X are overestimated and those

below the mean are underestimated.

Recognizing that there are errors in both X and Y, Curran

and Hay (1986) tested three alternative methods to predict

grassland LAI from the SR: Wald’s grouping method, RMA,

and an alternative least squares procedure that incorporates a

priori knowledge of relative errors in X and Y. They

recommended using Wald’s method or RMA if no estimates

of measurement error are available, and the alternative least

squares procedure if such estimates are available. From a

practical perspective, it will be rare for analysts to have

precise estimates of error from all the various sources

associated with measurements of vegetation and spectral

variables. As such, it is perhaps more prudent to make no

assumptions regarding the relative amounts of measurement

error and use RMA or Wald’s method. In spite of the

convincing arguments made by Curran and Hay (1986),

we could find only one subsequent remote sensing article

that used one of these methods (Larsson, 1993), where

RMA was used to predict woodland canopy cover from

single-date NDVI measurements.
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RMA is one of a class of similar models known as

orthogonal regression, total least squares regression, or

errors-in-variables modeling, depending on the discipline

in which the specific technique was developed (Van Huffel,

1997). Orthogonal regression minimizes the sum of squared

orthogonal distances from measurement points to the model

function. The RMA version of orthogonal regression is

graphically depicted in Curran and Hay (1986). Van Huffel

(1997) contains examples of orthogonal regression’s usage

in astronomy, meteorology, 3-D motion estimation, biomed-

ical signal processing, and multivariate calibration. RMA,

specifically, is quite commonly applied in allometry (Con-

rad & Gutmann, 1996; Gower, Kucharik, & Norman, 1999;

Nicol & Mackauer, 1999; Niklas & Buckman, 1994).

Besides making no assumptions about errors in X and Y,

RMA likewise makes no assumptions about dependency.

Conrad and Gutmann (1996) refer to RMA as geometric

mean regression, in that the slope (b1) is defined as the ratio

of sample standard deviation for Y over the sample standard

deviation for X, thus preserving in the model the relative

variance structure of the sample dataset. The effect of this is

to minimize or eliminate any attenuation or amplification of

predictions. For RMA, b0 is defined as the sample mean of

Y minus the quantity b1 times the sample mean of X. One

important component of the slope term (b1) is that it must be

given the sign (+/� ) of the correlation between X and Y

(Conrad & Gutmann, 1996), which is not given by Curran

and Hay (1986) or Larsson (1993). The form of the

regression model is identical to Eq. (1), but the calculations

of b0 and b1 are different. Mathematical similarities in the

formulations of the two OLS and the RMA regression

models mean that the model intercepts are all equivalent,

as are the coefficients of determination. What differ among

these models are the root mean square errors (RMSEs) and

the slopes of the relationships.

1.2.3. Canonical correlation analysis (CCA)

OLS regression has both simple (single X) and multiple

(several X) forms (Steel & Torrie, 1980). The use of OLS

regression in its multiple form, Yon multiple X, is familiar to

most remote sensing analysts conducting regression model-

ing. Although much less familiar, there is also a formulation

for multiple X inverse calibration (Brown, 1979). A simple

application of RMA requires one X and one Y. Thus, to

incorporate n-space indices and/or temporal datasets into an

RMA, the multiple X dataset must be linearly combined into

a single X variable. In essence, we must develop a new,

integrated index that is a linear combination of the multiple

X indices (or bands) from a single date or multiple dates. As

discussed earlier, this need is directly facilitated by CCA.

CCA is a generalized form of multiple regression that

permits the examination of interrelationships between two

sets of variables (multiple X’s and multiple Y’s) (Tabachnick

& Fidell, 1989). CCA maximizes the correlation between a

composite of variables from one set with a composite of

variables from another set. When there is only one X (i.e.,

vegetation variable, such as LAI), CCA provides a set of

coefficients for the Y’s that aligns them with the variation in

the X variable. When those coefficients are applied to the Y

variables, the result is a CCA score for each observation.

CCA scores are indexed values in the same way that

brightness, greenness, or wetness (or NDVI) values are

indexed values. However, with CCA, the alignment is

dataset-specific, whereas with the Tasseled Cap or NDVI,

the formulations are generalized and fixed.

2. Methods

This work was conducted in a temperate broadleaf agro-

ecosystem, consisting of corn and soybeans, and a boreal

needleleaf evergreen forest. The biophysical variable of

interest within the agro-ecosystem was LAI, which was

modeled for two separate measurement dates. The dominant

tree species in the boreal forest is black spruce, and the

variable we modeled was percent tree cover. This work was

done in the context of the BigFoot project, which was

designed to provide local validation of global estimates of

biophysical variables and processes using MODIS data

(Cohen & Justice, 1999).

2.1. Study sites, sampling design, and field measurements

The study sites and sampling design were described in

Campbell, Burrows, Gower, and Cohen (1999). The agri-

cultural site (AGRO) was a 5� 5 km area located just south

of Champaign, IL. The boreal forest site was a similarly

sized area surrounding the northern old black spruce

(NOBS) site of the Boreal Ecosystem Atmosphere Study

(Sellers et al., 1997), approximately 40 km west of Thomp-

son, Manitoba, Canada. The sample design was a nested

spatial series (Burrows et al., in press) that permits explicit

examination of spatial covariation among field-measured

ecosystem properties using variograms and cross-vario-

grams (Cressie, 1991). At each site, there were approxi-

mately 100 25� 25 m plots where land cover, LAI,

absorbed radiation, and net primary production were meas-

ured/observed at five to nine subplots per plot. Subplot

measurements were averaged to provide a single value for

each measured variable at each plot. Plot locations were

determined using a real-time differential GPS. The accuracy

of the system was < 0.5 m in both the x and y dimensions.

At the AGRO site, LAI was measured at five subplots per

plot using standard, direct harvest methods described by

Gower et al. (1999). Measurements were made at several

time periods during the growing season in 2000. We used

data from July and August. At NOBS, percent tree cover

was measured at nine systematically spaced subplots using

an upward-looking digital camera. The imaged canopy

projection area was dependent on tree height and the field

of view of the camera, which was 30j. At approximately 10-

m height, this means that among the nine subplots, nearly
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100% of the canopy area in each plot was imaged. In the

lab, each of the nine photos per plot was sampled using a

grid of 99 points to derive the percent live tree canopy cover

at each plot (Berterretche, 2002).

2.2. Image data and processing

For AGRO, ETM+ data from four dates were used to

capture the growing season from April through September

(Table 1). At NOBS, two images were used, one from

March and one from June. The images were georeferenced,

radiometrically calibrated, and translated into Tasseled Cap

brightness, greenness, and wetness. All images were ac-

quired at level 1G processing, with a cell size of 30 m, and

UTM (WGS84) projection. At AGRO, positional accuracy

of the native map projection of the June image was judged

by direct comparison with USGS digital orthophoto quad-

rangles (DOQs) at a 9� 9 km area centered on the study

site. A systematic local shift of � 37.5 m in the x-direction

and � 127.5 m in the y-direction was applied to the ETM+

image to register it to the DOQs. Subsequently, all other

image dates were positionally shifted to match the June date.

At NOBS, a panchromatic IKONOS image was registered to

the earth’s surface with the same projection parameters as at

AGRO using several GPS points collected in the field. The

June image was then positionally shifted to match the

IKONOS image, and the March image was shifted to match

the June image.

The COST absolute radiometric correction model of

Chavez (1996) was applied to each image to convert digital

counts to reflectance. Radiometrically ‘‘dark’’ objects were

assumed to have 2% reflectance across all bands. For

AGRO, the June image was selected as a reference image

and all other dates of imagery were relatively normalized to

it, as a fine-tuning for multidate, inter-image calibration.

The method used was similar to that of Oetter et al. (2001)

and of the Ridge Method of Kennedy and Cohen referred to

by Song, Woodcock, Seto, Pax Lenney, and Macomber

(2001), which are an adaptation of standard band-by-band

relative normalization procedures based on co-located bright

and dark targets. As the COST model is not appropriate for

low sun angle situations, the March image from NOBS was

converted to reflectance using a more basic dark-object-

subtraction model. Further, no relative normalization was

performed for the NOBS dataset due to major spectral

property differences between the two dates, given the back-

drop of ice and snow for the March image and of vegetation

and water for the June image.

No published transformation exists to convert atmos-

pherically-corrected ETM+ spectral data to Tasseled Cap

indices. However, Crist (1985) derived coefficients for

brightness, greenness, and wetness from ground-based

spectral data that can be applied to atmospherically cor-

rected Landsat data. Slight differences in spectral band

width and position, as well as calibration, exist between

Landsat TM and ETM+ (Teillet et al., 2001; Vogelmann et

al., 2001), but they are similar enough to assume that the

differences in Tasseled Cap indices derived for data from the

two different sensors are small. We tested this assumption

using TM and ETM+ images acquired within a few days of

each other (Path 46/Row 29) over western Oregon in 1999.

First, we converted atmospherically corrected TM DN data

to the Tasseled Cap indices using the coefficients in Crist

and Cicone (1984). We then converted the atmospherically

corrected TM DN data to reflectance using published

coefficients and formulae, before using the Crist (1985)

coefficients to convert the reflectance data to Tasseled Cap

indices. Finally, we atmospherically corrected the ETM+

data and then converted the reflectance data to the Tasseled

Cap indices using the Crist (1985) coefficients. A compar-

ison of the brightness, greenness, and wetness images from

the three methods showed that they were highly intercorre-

lated at a level of roughly 95%.

2.3. Variable selection and model development, execution,

and comparison

With both OLS and RMA regression done in a multiple-

Y (i.e., multiple SVIs) context, there is the issue of variable

selection. Not all Y variables are needed or are significant in

the presence of other Y variables, and some may need to be

culled from the dataset. For this we used forward stepwise

regression. In each case, brightness, greenness, and wetness

from all dates of available imagery were used as potential

variables for a model. To avoid overfitting a given model,

we imposed the rule that the number of variables to enter the

model be less than one-third the number of observations.

Prior to conducting stepwise regression, bivariate plots of all

potential Y variables against LAI or canopy cover were

evaluated to determine if transformations were required to

linearize relationships. Where necessary, standard log and

square root transformations were used.

Once the variables for a given dataset were selected,

RegT, RegI, and RMA regression models were developed.

For all three modeling approaches, the CCA axis derived

from the same Y-variable set was used. To compare the three

modeling approaches, predicted versus observed plots were

developed and overall bias and variance ratios were calcu-

lated. Bias was calculated as the mean of the predicted

values minus the mean of the observed values, such that a

positive bias equated to a mean overprediction and vice

versa. Variance ratio was calculated as the standard devia-

Table 1

ETM+ images used in this study

Site Path/row Date

AGRO 22/32 April 26, 2000

22/32 June 29, 2000

22/32 July 15, 2000

22/32 September 1, 2000

NOBS 34/21 March 13, 2000

33/21 June 6, 2000
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tion of the predicted values divided by the standard devia-

tion of the observed values. As such, a ratio of greater than

one meant that the prediction variance was greater than the

observed variance.

Field data are expensive to collect and process, so using

them prudently is essential. There is a trade-off between

using all available observations to develop a regression

model and having no independent observations to test the

model, versus excluding a predetermined number of obser-

vations to test the model, but having a less robust model

because it was developed on fewer points. The statistical

literature provides several alternative, but related ways to

address this problem: cross-validation, bootstrapping, and

jackknifing (Efron & Gong, 1983). We used the cross-

validation procedure, which provides a nearly unbiased

estimator of prediction error (Efron & Gong, 1983). This

required, for each dataset and regression variant, that (where

n = 100) 100 separate models be developed, each time with

data from 99 observations. Then, each model was used to

predict the observation that was left out, thus providing the

predictions for all 100 plot observations that were needed to

compare against the observed values. This provided an error

characterization equivalent to the PRESS statistic (SAS,

1990).

3. Agricultural example—LAI at AGRO

A scatterplot of corn and soybean greenness from the

July measurement date (Fig. 1) revealed that these two crops

represented different populations and were best modeled

separately. This was done for both July and August dates,

yielding four separate modeling sets (Table 2). For all four

model sets, the three regression approaches had equivalent
Fig. 1. Tasseled Cap greenness as a function of July LAI at AGRO.

Table 2

Regression model statistics for each model type and dataset

Model Type Slope Intercept R2

Soy, July RegT 0.49 1.54 0.58

RegI 1.19/0.84 � 1.83/1.54 0.58

RMA 0.64 1.54 0.58

Corn, July RegT 0.63 4.41 0.61

RegI 0.96/1.04 � 4.24/4.41 0.61

RMA 0.81 4.41 0.61

Soy, August RegT 0.49 3.44 0.27

RegI 0.56/1.79 � 1.91/3.44 0.27

RMA 0.93 3.44 0.27

Corn, August RegT 0.45 4.00 0.64

RegI 1.44/0.70 � 5.76/4.00 0.64

RMA 0.56 4.00 0.64

Canopy cover RegT 15.08 38.89 0.68

RegI 0.045/22.1 � 1.76/38.89 0.68

RMA 18.26 38.89 0.68

For the RegI models, the original slope and intercept are given along with

the back-inverted slope and intercept for comparison with other model

types.

Table 3

Cross-validation results for each model type and dataset

Model type n

RegT RegI RMA

Soy, July 64

R 0.74 0.74 0.74

RMSE 0.42 0.59 0.47

Bias � 0.01 � 0.03 � 0.01

Variance ratio 0.80 1.40 1.06

Corn, July 31

R 0.76 0.76 0.76

RMSE 0.53 0.68 0.56

Bias 0.00 0.03 0.01

Variance ratio 0.76 1.31 1.01

Combined, July 95

R 0.95 0.92 0.94

RMSE 0.46 0.62 0.50

Bias � 0.01 � 0.01 0.00

Variance ratio 0.96 1.07 1.00

Soy, August 64

R 0.47 0.49 0.49

RMSE 0.82 1.57 0.95

Bias � 0.01 � 0.02 � 0.02

Variance ratio 0.53 1.95 1.02

Corn, August 31

R 0.79 0.79 0.79

RMSE 0.35 0.46 0.37

Bias 0.00 0.03 0.01

Variance ratio 0.81 1.33 1.02

Combined, August 95

R 0.59 0.54 0.57

RMSE 0.70 1.32 0.81

Bias � 0.01 � 0.01 � 0.01

Variance ratio 0.62 1.81 1.01

Canopy cover 103

R 0.82 0.82 0.82

RMSE 10.41 12.68 10.93

Bias 0.02 0.03 0.03

Variance ratio 0.83 1.22 1.01

For the agricultural site, five plots were not corn or soybeans. For the forest

site, there were three extra plots.
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coefficients of determination and model intercepts. The

differences among approaches were expressed in the slope

term, with RegT, having the least, RegI having the greatest,

and RMA being intermediate. As mentioned earlier, these

are anticipated results that are provided here for demon-

stration purposes.

A summary of cross-validation predictions revealed the

effect of the different modeling approaches (Table 3), again,

for demonstration purposes. Presented are results from the

crop-specific models and from the combined set of predic-

tions across the two crop-specific models. For the July date,

corn, soybeans, and combined, the correlation coefficients

(R) between predicted LAI and observed LAI were essen-

tially the same for all three approaches. The only difference,

which was minimal, was for the combined model. This

difference is attributable to the cross-validation procedure.

Bias was near zero in all cases, indicating that the observed

mean of the samples was preserved in the predictions. The

differences among the modeling approaches were related to

the different slope terms (from Table 2), and were expressed

in both the RMSE and the variance ratio. RegT, by design,

had the lowest RMSE in predictions of Y (LAI). Similarly,

because RegI also minimized the sums of squares of error in

Y (this time, SVI), it yielded the greatest RMSE in LAI. As

Fig. 2. Predicted (from cross-validation) versus observed July and August LAI at AGRO. RegT is traditional OLS regression, RegI is inverse OLS regression,

and RMA is reduced major axis regression. Left is July; right is August.
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expected, RMA was a compromise solution, having inter-

mediate values of RMSE. With respect to the variance ratio,

RMA always exhibited a value close to 1.0, indicating that

the variance structure of the observed values was preserved

in the predicted values. Deviations from unity for the OLS

methods were greatest when the correlation coefficients

were lowest. This latter point was particularly evident in

the results from August, where correlations were lower than

in July. For all cases, RegI had variance ratios greater than

1.0 and RegT had values less than 1.0, indicating greater and

lesser variance, respectively, relative to observed values.

With regression models, it is always possible to have

individual predictions outside the range of observed values.

This mostly occurs when observed ‘‘independent’’ variables

have values outside the range on which models were

constructed (an increased possibility with cross-validation),

or when significant outliers exist in the model dataset. Here,

this is evident from the predictions of negative LAI (Fig. 2).

Of course, this ‘‘problem’’ is amplified with RegI and is

suppressed with RegT.

4. Boreal forest example—tree cover at NOBS

The models for tree cover at NOBS exhibited similar

relative characteristics as those at AGRO (Table 2). The

coefficients of determination and the intercepts were all

identical. The only difference among modeling approaches

was the slope of the relationships, with RegT having the

lesser value, RegI having the greater value, and RMA

having an intermediate value. Likewise, the cross-validation

results indicated identical correlations between tree cover

and the CCA axis and essentially no overall bias for any of

the models. Again, RMSE was lowest for RegT, highest for

RegI, and intermediate for RMA.

Some predictions outside of the observed range occurred

for tree cover, as it had for LAI at AGRO (Fig. 3). Again, this

was most evident using the RegI approach, which amplified

the variance of the predictions relative to the observed values.

For tree cover, there was a slight tendency toward an

asymptote in the predictions, especially for the RegT model.

5. Discussion and summary

This paper presents to a remote sensing audience a

verification of existing regression theory. The remote sens-

ing literature contains little of regression theory, and even

less of the numerous options for its application. With rare

exception, the remote sensing literature contains rote appli-

cation of OLS (ordinary least squares) regression, without

ever questioning its disadvantages relative to other forms of

regression. Questioning these disadvantages and demon-

strating alternative regression approaches were the main

purposes of this paper. Numerous examples of alternative

regression models exist in many other scientific and tech-

nical fields, but remote sensing community has largely

ignored the important work of Curran and Hay (1986).

Most of the regression-based remote sensing literature is

focused on minimizing error (e.g., RMSE) in the predictions

Fig. 3. Predicted (from cross-validation) versus observed percent live tree

canopy cover at NOBS. RegT is traditional OLS regression, RegI is inverse

OLS regression, and RMA is reduced major axis regression.
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of biophysical variables. Traditional OLS regression is an

excellent means for accomplishing that, but there are two big

problems with OLS. First, it assumes no error in measure-

ments of vegetation reflectance and/or the biophysical var-

iable of interest. Second, traditional OLS provides attenuated

variance in predictions of that variable. The statistical

literature strongly suggests that if there are errors in the

measurements of both variables (e.g., reflectance and bio-

physical), then OLS regression is the wrong model to use.

Because it is nearly impossible to defend any claim that

either reflectance or biophysical variables are measured

without error, application of OLS regression is inappropriate

in remote sensing.

Compression of variance by OLS becomes critical if the

regression model is used to build a map of a biophysical

variable, that in turn drives a functional/mechanistic model.

If the mechanistic model involves nonlinear functions of the

biophysical variable, attenuation of variance in the biophys-

ical variable introduces error in the mechanistically modeled

outputs. Because OLS attenuates the variance, it will intro-

duce such error. The degree of attenuation is essentially a

linear function of the correlation between the spectral data

and the biophysical variable, low correlation, much attenu-

ation, and vice versa. Many of the relationships between

reflectance and biophysical variable are poorly correlated, so

this is not a non-issue.

The remote sensing literature contains a great number of

examples of empirical, regression modeling relating SVIs to

measures of a myriad of vegetation variables modeled across

an assortment of sites and biomes. Most studies used SVIs

based on red and near-infrared reflectance. More often than

not, a single SVI from a single date was used. The spectral

depth of ETM+ is essentially three-dimensional (Cohen et

al., 1995; Crist & Cicone, 1984) and we have increasing

numbers of temporal image series available for greater

predictive power (Lefsky et al., 2001). As such, we should

be expanding our use of multiple regression over simple

regression techniques. Multiple regression in an RMA con-

text requires a single-integrated index of multiple bands or

indices. This need is directly facilitated by CCA. Canonical

correlation analysis has rarely been used in remote sensing.

However, for those contemplating the use of CCA for

deriving a dataset-dependent index, there should be a clear

understanding of what the procedure does to the dataset.

A simple test on any appropriate single-Y (in this case,

e.g., LAI), multiple-X (in this case, SVIs) dataset illustrates

that CCA scores are perfectly correlated to predicted Yvalues

from traditional OLS multiple regression on that dataset. The

difference is that one provides predictions of the Y variable,

whereas the other is simply a set of index scores that are

maximally correlated with the observed Y variable. If one

then conducts traditional simple OLS regression with the

CCA scores as X and the LAIs as Y, they will derive exactly

the same predicted values for LAI as those predicted from

the original multiple OLS regression. In both cases, RMA

would be required to balance the variance ratio at a value of

1.0. Traditional OLS regression provides biophysical pre-

dictions, but the variance of those predictions is unbalanced

vis-à-vis the observed variance in the biophysical variable.

CCA provides an index that is maximally correlated with the

biophysical variable of interest, but it does not provide

predictions. RMA can either provide predictions from a

CCA index that have a balanced variance, or it can balance

(or calibrate) a set of unbalanced predictions derived pre-

viously from traditional OLS regression conducted on a

CCA index or from multiple OLS regression. For the latter

case, the CCA index would be superfluous. Thus, the only

important reason for conducting the CCA is if the index itself

is desired, for which there may be numerous reasons. For this

study, it was desirable to have a single index for the

convenience of comparative analysis among methods to

derive a single regression slope term for each method. It is

important to keep in mind that whereas CCA is dataset-

specific, NDVI or SR, or other SVIs such as brightness,

greenness, and wetness, are more generalizable in terms of

their biophysical meaning.

In this study, we illustrated an improved regression

modeling strategy that incorporates all the recommended

steps for deriving mapped estimates that have their errors

characterized. This strategy includes the collection of geore-

ferenced field data, image georeferencing, image radiometric

calibration, translation of reflectance into SVIs, testing for

significance of each SVI in regression models, and using

cross-validation to provide nearly unbiased testing of robust

models. Applying the RMA models to the CCA indices

provided high-quality maps of LAI for the agricultural site,

with means and variances well preserved in each important

land cover class (corn and soybeans). Additionally, an

important forest variable was mapped, tree cover, which will

subsequently be used at the forest site to help derive a land

cover map using classes that are largely based on percent tree

cover. Although any given study may weigh these various

processing components differently, two considerations are

critical. (1) Is it acceptable for a predicted variable to have a

different variance structure from that of empirical observa-

tions? (2) Is there a compelling reason to limit the analysis to

a single SVI from a single date? If the answer to Question 2

is ‘‘no’’, then CCA may be an important aid in your analysis.
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